Search

speed of sound in an ideal gas by pressure

Input interpretation

speed of sound in an ideal gas by pressure
speed of sound in an ideal gas by pressure

Equation

v_s = sqrt((γ P)/d) |  v_s | speed of sound γ | adiabatic index P | pressure d | density
v_s = sqrt((γ P)/d) | v_s | speed of sound γ | adiabatic index P | pressure d | density

Input values

adiabatic index | 7/5 (diatomic gas) pressure | 1 atm (atmosphere) density | 1.225 kg/m^3 (kilograms per cubic meter)
adiabatic index | 7/5 (diatomic gas) pressure | 1 atm (atmosphere) density | 1.225 kg/m^3 (kilograms per cubic meter)

Results

speed of sound | 340.3 m/s (meters per second) = 761.2 mph (miles per hour) = 1225 km/h (kilometers per hour) = 29401 km/day (kilometers per day) = 0.3403 km/s (kilometers per second)
speed of sound | 340.3 m/s (meters per second) = 761.2 mph (miles per hour) = 1225 km/h (kilometers per hour) = 29401 km/day (kilometers per day) = 0.3403 km/s (kilometers per second)

Possible intermediate steps

Calculate the speed of sound using the following information: known variables | |  γ | adiabatic index | 7/5 (diatomic gas) P | pressure | 1 atm d | density | 1.225 kg/m^3 Convert known variables into appropriate units using the following: 1 atm = 1.0133×10^8 g/(m s^2): 1 kg/m^3 = 1000 g/m^3: known variables | |  γ | adiabatic index | 7/5 P | pressure | 1.0133×10^8 g/(m s^2) d | density | 1225 g/m^3 The relevant equation that relates speed of sound (v_s), adiabatic index (γ), pressure (P), and density (d) is: v_s = sqrt((γ P)/d) Substitute known variables into the equation: known variables | |  γ | adiabatic index | 7/5 P | pressure | 1.0133×10^8 g/(m s^2) d | density | 1225 g/m^3 | : v_s = sqrt((7×1.0133×10^8 g/(m s^2))/(5×1225 g/m^3)) Separate the numerical part, sqrt((7×1.0133×10^8)/(5×1225)), from the unit part, sqrt((g/(m s^2))/(g/m^3)) = m/s: v_s = sqrt((7×1.0133×10^8)/(5×1225)) m/s Evaluate sqrt((7×1.0133×10^8)/(5×1225)): Answer: |   | v_s = 340.3 m/s
Calculate the speed of sound using the following information: known variables | | γ | adiabatic index | 7/5 (diatomic gas) P | pressure | 1 atm d | density | 1.225 kg/m^3 Convert known variables into appropriate units using the following: 1 atm = 1.0133×10^8 g/(m s^2): 1 kg/m^3 = 1000 g/m^3: known variables | | γ | adiabatic index | 7/5 P | pressure | 1.0133×10^8 g/(m s^2) d | density | 1225 g/m^3 The relevant equation that relates speed of sound (v_s), adiabatic index (γ), pressure (P), and density (d) is: v_s = sqrt((γ P)/d) Substitute known variables into the equation: known variables | | γ | adiabatic index | 7/5 P | pressure | 1.0133×10^8 g/(m s^2) d | density | 1225 g/m^3 | : v_s = sqrt((7×1.0133×10^8 g/(m s^2))/(5×1225 g/m^3)) Separate the numerical part, sqrt((7×1.0133×10^8)/(5×1225)), from the unit part, sqrt((g/(m s^2))/(g/m^3)) = m/s: v_s = sqrt((7×1.0133×10^8)/(5×1225)) m/s Evaluate sqrt((7×1.0133×10^8)/(5×1225)): Answer: | | v_s = 340.3 m/s