Search

H2SO4 + FeSO4 + KClO3 = H2O + KCl + Fe2(SO4)3

Input interpretation

H_2SO_4 (sulfuric acid) + FeSO_4 (duretter) + KClO_3 (potassium chlorate) ⟶ H_2O (water) + KCl (potassium chloride) + Fe_2(SO_4)_3·xH_2O (iron(III) sulfate hydrate)
H_2SO_4 (sulfuric acid) + FeSO_4 (duretter) + KClO_3 (potassium chlorate) ⟶ H_2O (water) + KCl (potassium chloride) + Fe_2(SO_4)_3·xH_2O (iron(III) sulfate hydrate)

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + FeSO_4 + KClO_3 ⟶ H_2O + KCl + Fe_2(SO_4)_3·xH_2O Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 FeSO_4 + c_3 KClO_3 ⟶ c_4 H_2O + c_5 KCl + c_6 Fe_2(SO_4)_3·xH_2O Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Fe, Cl and K: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 4 c_2 + 3 c_3 = c_4 + 12 c_6 S: | c_1 + c_2 = 3 c_6 Fe: | c_2 = 2 c_6 Cl: | c_3 = c_5 K: | c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 6 c_3 = 1 c_4 = 3 c_5 = 1 c_6 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 3 H_2SO_4 + 6 FeSO_4 + KClO_3 ⟶ 3 H_2O + KCl + 3 Fe_2(SO_4)_3·xH_2O
Balance the chemical equation algebraically: H_2SO_4 + FeSO_4 + KClO_3 ⟶ H_2O + KCl + Fe_2(SO_4)_3·xH_2O Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 FeSO_4 + c_3 KClO_3 ⟶ c_4 H_2O + c_5 KCl + c_6 Fe_2(SO_4)_3·xH_2O Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Fe, Cl and K: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 4 c_2 + 3 c_3 = c_4 + 12 c_6 S: | c_1 + c_2 = 3 c_6 Fe: | c_2 = 2 c_6 Cl: | c_3 = c_5 K: | c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 6 c_3 = 1 c_4 = 3 c_5 = 1 c_6 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 3 H_2SO_4 + 6 FeSO_4 + KClO_3 ⟶ 3 H_2O + KCl + 3 Fe_2(SO_4)_3·xH_2O

Structures

 + + ⟶ + +
+ + ⟶ + +

Names

sulfuric acid + duretter + potassium chlorate ⟶ water + potassium chloride + iron(III) sulfate hydrate
sulfuric acid + duretter + potassium chlorate ⟶ water + potassium chloride + iron(III) sulfate hydrate

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + FeSO_4 + KClO_3 ⟶ H_2O + KCl + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 H_2SO_4 + 6 FeSO_4 + KClO_3 ⟶ 3 H_2O + KCl + 3 Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 3 | -3 FeSO_4 | 6 | -6 KClO_3 | 1 | -1 H_2O | 3 | 3 KCl | 1 | 1 Fe_2(SO_4)_3·xH_2O | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 3 | -3 | ([H2SO4])^(-3) FeSO_4 | 6 | -6 | ([FeSO4])^(-6) KClO_3 | 1 | -1 | ([KClO3])^(-1) H_2O | 3 | 3 | ([H2O])^3 KCl | 1 | 1 | [KCl] Fe_2(SO_4)_3·xH_2O | 3 | 3 | ([Fe2(SO4)3·xH2O])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-3) ([FeSO4])^(-6) ([KClO3])^(-1) ([H2O])^3 [KCl] ([Fe2(SO4)3·xH2O])^3 = (([H2O])^3 [KCl] ([Fe2(SO4)3·xH2O])^3)/(([H2SO4])^3 ([FeSO4])^6 [KClO3])
Construct the equilibrium constant, K, expression for: H_2SO_4 + FeSO_4 + KClO_3 ⟶ H_2O + KCl + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 H_2SO_4 + 6 FeSO_4 + KClO_3 ⟶ 3 H_2O + KCl + 3 Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 3 | -3 FeSO_4 | 6 | -6 KClO_3 | 1 | -1 H_2O | 3 | 3 KCl | 1 | 1 Fe_2(SO_4)_3·xH_2O | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 3 | -3 | ([H2SO4])^(-3) FeSO_4 | 6 | -6 | ([FeSO4])^(-6) KClO_3 | 1 | -1 | ([KClO3])^(-1) H_2O | 3 | 3 | ([H2O])^3 KCl | 1 | 1 | [KCl] Fe_2(SO_4)_3·xH_2O | 3 | 3 | ([Fe2(SO4)3·xH2O])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-3) ([FeSO4])^(-6) ([KClO3])^(-1) ([H2O])^3 [KCl] ([Fe2(SO4)3·xH2O])^3 = (([H2O])^3 [KCl] ([Fe2(SO4)3·xH2O])^3)/(([H2SO4])^3 ([FeSO4])^6 [KClO3])

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + FeSO_4 + KClO_3 ⟶ H_2O + KCl + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 H_2SO_4 + 6 FeSO_4 + KClO_3 ⟶ 3 H_2O + KCl + 3 Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 3 | -3 FeSO_4 | 6 | -6 KClO_3 | 1 | -1 H_2O | 3 | 3 KCl | 1 | 1 Fe_2(SO_4)_3·xH_2O | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 3 | -3 | -1/3 (Δ[H2SO4])/(Δt) FeSO_4 | 6 | -6 | -1/6 (Δ[FeSO4])/(Δt) KClO_3 | 1 | -1 | -(Δ[KClO3])/(Δt) H_2O | 3 | 3 | 1/3 (Δ[H2O])/(Δt) KCl | 1 | 1 | (Δ[KCl])/(Δt) Fe_2(SO_4)_3·xH_2O | 3 | 3 | 1/3 (Δ[Fe2(SO4)3·xH2O])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/3 (Δ[H2SO4])/(Δt) = -1/6 (Δ[FeSO4])/(Δt) = -(Δ[KClO3])/(Δt) = 1/3 (Δ[H2O])/(Δt) = (Δ[KCl])/(Δt) = 1/3 (Δ[Fe2(SO4)3·xH2O])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + FeSO_4 + KClO_3 ⟶ H_2O + KCl + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 H_2SO_4 + 6 FeSO_4 + KClO_3 ⟶ 3 H_2O + KCl + 3 Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 3 | -3 FeSO_4 | 6 | -6 KClO_3 | 1 | -1 H_2O | 3 | 3 KCl | 1 | 1 Fe_2(SO_4)_3·xH_2O | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 3 | -3 | -1/3 (Δ[H2SO4])/(Δt) FeSO_4 | 6 | -6 | -1/6 (Δ[FeSO4])/(Δt) KClO_3 | 1 | -1 | -(Δ[KClO3])/(Δt) H_2O | 3 | 3 | 1/3 (Δ[H2O])/(Δt) KCl | 1 | 1 | (Δ[KCl])/(Δt) Fe_2(SO_4)_3·xH_2O | 3 | 3 | 1/3 (Δ[Fe2(SO4)3·xH2O])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/3 (Δ[H2SO4])/(Δt) = -1/6 (Δ[FeSO4])/(Δt) = -(Δ[KClO3])/(Δt) = 1/3 (Δ[H2O])/(Δt) = (Δ[KCl])/(Δt) = 1/3 (Δ[Fe2(SO4)3·xH2O])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | duretter | potassium chlorate | water | potassium chloride | iron(III) sulfate hydrate formula | H_2SO_4 | FeSO_4 | KClO_3 | H_2O | KCl | Fe_2(SO_4)_3·xH_2O Hill formula | H_2O_4S | FeO_4S | ClKO_3 | H_2O | ClK | Fe_2O_12S_3 name | sulfuric acid | duretter | potassium chlorate | water | potassium chloride | iron(III) sulfate hydrate IUPAC name | sulfuric acid | iron(+2) cation sulfate | potassium chlorate | water | potassium chloride | diferric trisulfate
| sulfuric acid | duretter | potassium chlorate | water | potassium chloride | iron(III) sulfate hydrate formula | H_2SO_4 | FeSO_4 | KClO_3 | H_2O | KCl | Fe_2(SO_4)_3·xH_2O Hill formula | H_2O_4S | FeO_4S | ClKO_3 | H_2O | ClK | Fe_2O_12S_3 name | sulfuric acid | duretter | potassium chlorate | water | potassium chloride | iron(III) sulfate hydrate IUPAC name | sulfuric acid | iron(+2) cation sulfate | potassium chlorate | water | potassium chloride | diferric trisulfate