Search

H2SO4 + KMnO4 + [Cr(NH2)2(CO)6]4[Cr(CN)6]3 = H2O + CO2 + K2SO4 + MnSO4 + K2Cr2O7 + KNO3

Input interpretation

H_2SO_4 sulfuric acid + KMnO_4 potassium permanganate + (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ H_2O water + CO_2 carbon dioxide + K_2SO_4 potassium sulfate + MnSO_4 manganese(II) sulfate + K_2Cr_2O_7 potassium dichromate + KNO_3 potassium nitrate
H_2SO_4 sulfuric acid + KMnO_4 potassium permanganate + (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ H_2O water + CO_2 carbon dioxide + K_2SO_4 potassium sulfate + MnSO_4 manganese(II) sulfate + K_2Cr_2O_7 potassium dichromate + KNO_3 potassium nitrate

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + KMnO_4 + (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ H_2O + CO_2 + K_2SO_4 + MnSO_4 + K_2Cr_2O_7 + KNO_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 KMnO_4 + c_3 (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ c_4 H_2O + c_5 CO_2 + c_6 K_2SO_4 + c_7 MnSO_4 + c_8 K_2Cr_2O_7 + c_9 KNO_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K, Mn, Cr, N and C: H: | 2 c_1 + 16 c_3 = 2 c_4 O: | 4 c_1 + 4 c_2 + 24 c_3 = c_4 + 2 c_5 + 4 c_6 + 4 c_7 + 7 c_8 + 3 c_9 S: | c_1 = c_6 + c_7 K: | c_2 = 2 c_6 + 2 c_8 + c_9 Mn: | c_2 = c_7 Cr: | 7 c_3 = 2 c_8 N: | 26 c_3 = c_9 C: | 42 c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 759/10 c_2 = 308/5 c_3 = 1 c_4 = 839/10 c_5 = 42 c_6 = 143/10 c_7 = 308/5 c_8 = 7/2 c_9 = 26 Multiply by the least common denominator, 10, to eliminate fractional coefficients: c_1 = 759 c_2 = 616 c_3 = 10 c_4 = 839 c_5 = 420 c_6 = 143 c_7 = 616 c_8 = 35 c_9 = 260 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 759 H_2SO_4 + 616 KMnO_4 + 10 (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ 839 H_2O + 420 CO_2 + 143 K_2SO_4 + 616 MnSO_4 + 35 K_2Cr_2O_7 + 260 KNO_3
Balance the chemical equation algebraically: H_2SO_4 + KMnO_4 + (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ H_2O + CO_2 + K_2SO_4 + MnSO_4 + K_2Cr_2O_7 + KNO_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 KMnO_4 + c_3 (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ c_4 H_2O + c_5 CO_2 + c_6 K_2SO_4 + c_7 MnSO_4 + c_8 K_2Cr_2O_7 + c_9 KNO_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K, Mn, Cr, N and C: H: | 2 c_1 + 16 c_3 = 2 c_4 O: | 4 c_1 + 4 c_2 + 24 c_3 = c_4 + 2 c_5 + 4 c_6 + 4 c_7 + 7 c_8 + 3 c_9 S: | c_1 = c_6 + c_7 K: | c_2 = 2 c_6 + 2 c_8 + c_9 Mn: | c_2 = c_7 Cr: | 7 c_3 = 2 c_8 N: | 26 c_3 = c_9 C: | 42 c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 759/10 c_2 = 308/5 c_3 = 1 c_4 = 839/10 c_5 = 42 c_6 = 143/10 c_7 = 308/5 c_8 = 7/2 c_9 = 26 Multiply by the least common denominator, 10, to eliminate fractional coefficients: c_1 = 759 c_2 = 616 c_3 = 10 c_4 = 839 c_5 = 420 c_6 = 143 c_7 = 616 c_8 = 35 c_9 = 260 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 759 H_2SO_4 + 616 KMnO_4 + 10 (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ 839 H_2O + 420 CO_2 + 143 K_2SO_4 + 616 MnSO_4 + 35 K_2Cr_2O_7 + 260 KNO_3

Structures

 + + (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ + + + + +
+ + (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ + + + + +

Names

sulfuric acid + potassium permanganate + (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ water + carbon dioxide + potassium sulfate + manganese(II) sulfate + potassium dichromate + potassium nitrate
sulfuric acid + potassium permanganate + (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ water + carbon dioxide + potassium sulfate + manganese(II) sulfate + potassium dichromate + potassium nitrate

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + KMnO_4 + (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ H_2O + CO_2 + K_2SO_4 + MnSO_4 + K_2Cr_2O_7 + KNO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 759 H_2SO_4 + 616 KMnO_4 + 10 (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ 839 H_2O + 420 CO_2 + 143 K_2SO_4 + 616 MnSO_4 + 35 K_2Cr_2O_7 + 260 KNO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 759 | -759 KMnO_4 | 616 | -616 (Cr(NH2)2(CO)6)4(Cr(CN)6)3 | 10 | -10 H_2O | 839 | 839 CO_2 | 420 | 420 K_2SO_4 | 143 | 143 MnSO_4 | 616 | 616 K_2Cr_2O_7 | 35 | 35 KNO_3 | 260 | 260 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 759 | -759 | ([H2SO4])^(-759) KMnO_4 | 616 | -616 | ([KMnO4])^(-616) (Cr(NH2)2(CO)6)4(Cr(CN)6)3 | 10 | -10 | ([(Cr(NH2)2(CO)6)4(Cr(CN)6)3])^(-10) H_2O | 839 | 839 | ([H2O])^839 CO_2 | 420 | 420 | ([CO2])^420 K_2SO_4 | 143 | 143 | ([K2SO4])^143 MnSO_4 | 616 | 616 | ([MnSO4])^616 K_2Cr_2O_7 | 35 | 35 | ([K2Cr2O7])^35 KNO_3 | 260 | 260 | ([KNO3])^260 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-759) ([KMnO4])^(-616) ([(Cr(NH2)2(CO)6)4(Cr(CN)6)3])^(-10) ([H2O])^839 ([CO2])^420 ([K2SO4])^143 ([MnSO4])^616 ([K2Cr2O7])^35 ([KNO3])^260 = (([H2O])^839 ([CO2])^420 ([K2SO4])^143 ([MnSO4])^616 ([K2Cr2O7])^35 ([KNO3])^260)/(([H2SO4])^759 ([KMnO4])^616 ([(Cr(NH2)2(CO)6)4(Cr(CN)6)3])^10)
Construct the equilibrium constant, K, expression for: H_2SO_4 + KMnO_4 + (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ H_2O + CO_2 + K_2SO_4 + MnSO_4 + K_2Cr_2O_7 + KNO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 759 H_2SO_4 + 616 KMnO_4 + 10 (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ 839 H_2O + 420 CO_2 + 143 K_2SO_4 + 616 MnSO_4 + 35 K_2Cr_2O_7 + 260 KNO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 759 | -759 KMnO_4 | 616 | -616 (Cr(NH2)2(CO)6)4(Cr(CN)6)3 | 10 | -10 H_2O | 839 | 839 CO_2 | 420 | 420 K_2SO_4 | 143 | 143 MnSO_4 | 616 | 616 K_2Cr_2O_7 | 35 | 35 KNO_3 | 260 | 260 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 759 | -759 | ([H2SO4])^(-759) KMnO_4 | 616 | -616 | ([KMnO4])^(-616) (Cr(NH2)2(CO)6)4(Cr(CN)6)3 | 10 | -10 | ([(Cr(NH2)2(CO)6)4(Cr(CN)6)3])^(-10) H_2O | 839 | 839 | ([H2O])^839 CO_2 | 420 | 420 | ([CO2])^420 K_2SO_4 | 143 | 143 | ([K2SO4])^143 MnSO_4 | 616 | 616 | ([MnSO4])^616 K_2Cr_2O_7 | 35 | 35 | ([K2Cr2O7])^35 KNO_3 | 260 | 260 | ([KNO3])^260 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-759) ([KMnO4])^(-616) ([(Cr(NH2)2(CO)6)4(Cr(CN)6)3])^(-10) ([H2O])^839 ([CO2])^420 ([K2SO4])^143 ([MnSO4])^616 ([K2Cr2O7])^35 ([KNO3])^260 = (([H2O])^839 ([CO2])^420 ([K2SO4])^143 ([MnSO4])^616 ([K2Cr2O7])^35 ([KNO3])^260)/(([H2SO4])^759 ([KMnO4])^616 ([(Cr(NH2)2(CO)6)4(Cr(CN)6)3])^10)

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + KMnO_4 + (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ H_2O + CO_2 + K_2SO_4 + MnSO_4 + K_2Cr_2O_7 + KNO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 759 H_2SO_4 + 616 KMnO_4 + 10 (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ 839 H_2O + 420 CO_2 + 143 K_2SO_4 + 616 MnSO_4 + 35 K_2Cr_2O_7 + 260 KNO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 759 | -759 KMnO_4 | 616 | -616 (Cr(NH2)2(CO)6)4(Cr(CN)6)3 | 10 | -10 H_2O | 839 | 839 CO_2 | 420 | 420 K_2SO_4 | 143 | 143 MnSO_4 | 616 | 616 K_2Cr_2O_7 | 35 | 35 KNO_3 | 260 | 260 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 759 | -759 | -1/759 (Δ[H2SO4])/(Δt) KMnO_4 | 616 | -616 | -1/616 (Δ[KMnO4])/(Δt) (Cr(NH2)2(CO)6)4(Cr(CN)6)3 | 10 | -10 | -1/10 (Δ[(Cr(NH2)2(CO)6)4(Cr(CN)6)3])/(Δt) H_2O | 839 | 839 | 1/839 (Δ[H2O])/(Δt) CO_2 | 420 | 420 | 1/420 (Δ[CO2])/(Δt) K_2SO_4 | 143 | 143 | 1/143 (Δ[K2SO4])/(Δt) MnSO_4 | 616 | 616 | 1/616 (Δ[MnSO4])/(Δt) K_2Cr_2O_7 | 35 | 35 | 1/35 (Δ[K2Cr2O7])/(Δt) KNO_3 | 260 | 260 | 1/260 (Δ[KNO3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/759 (Δ[H2SO4])/(Δt) = -1/616 (Δ[KMnO4])/(Δt) = -1/10 (Δ[(Cr(NH2)2(CO)6)4(Cr(CN)6)3])/(Δt) = 1/839 (Δ[H2O])/(Δt) = 1/420 (Δ[CO2])/(Δt) = 1/143 (Δ[K2SO4])/(Δt) = 1/616 (Δ[MnSO4])/(Δt) = 1/35 (Δ[K2Cr2O7])/(Δt) = 1/260 (Δ[KNO3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + KMnO_4 + (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ H_2O + CO_2 + K_2SO_4 + MnSO_4 + K_2Cr_2O_7 + KNO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 759 H_2SO_4 + 616 KMnO_4 + 10 (Cr(NH2)2(CO)6)4(Cr(CN)6)3 ⟶ 839 H_2O + 420 CO_2 + 143 K_2SO_4 + 616 MnSO_4 + 35 K_2Cr_2O_7 + 260 KNO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 759 | -759 KMnO_4 | 616 | -616 (Cr(NH2)2(CO)6)4(Cr(CN)6)3 | 10 | -10 H_2O | 839 | 839 CO_2 | 420 | 420 K_2SO_4 | 143 | 143 MnSO_4 | 616 | 616 K_2Cr_2O_7 | 35 | 35 KNO_3 | 260 | 260 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 759 | -759 | -1/759 (Δ[H2SO4])/(Δt) KMnO_4 | 616 | -616 | -1/616 (Δ[KMnO4])/(Δt) (Cr(NH2)2(CO)6)4(Cr(CN)6)3 | 10 | -10 | -1/10 (Δ[(Cr(NH2)2(CO)6)4(Cr(CN)6)3])/(Δt) H_2O | 839 | 839 | 1/839 (Δ[H2O])/(Δt) CO_2 | 420 | 420 | 1/420 (Δ[CO2])/(Δt) K_2SO_4 | 143 | 143 | 1/143 (Δ[K2SO4])/(Δt) MnSO_4 | 616 | 616 | 1/616 (Δ[MnSO4])/(Δt) K_2Cr_2O_7 | 35 | 35 | 1/35 (Δ[K2Cr2O7])/(Δt) KNO_3 | 260 | 260 | 1/260 (Δ[KNO3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/759 (Δ[H2SO4])/(Δt) = -1/616 (Δ[KMnO4])/(Δt) = -1/10 (Δ[(Cr(NH2)2(CO)6)4(Cr(CN)6)3])/(Δt) = 1/839 (Δ[H2O])/(Δt) = 1/420 (Δ[CO2])/(Δt) = 1/143 (Δ[K2SO4])/(Δt) = 1/616 (Δ[MnSO4])/(Δt) = 1/35 (Δ[K2Cr2O7])/(Δt) = 1/260 (Δ[KNO3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | potassium permanganate | (Cr(NH2)2(CO)6)4(Cr(CN)6)3 | water | carbon dioxide | potassium sulfate | manganese(II) sulfate | potassium dichromate | potassium nitrate formula | H_2SO_4 | KMnO_4 | (Cr(NH2)2(CO)6)4(Cr(CN)6)3 | H_2O | CO_2 | K_2SO_4 | MnSO_4 | K_2Cr_2O_7 | KNO_3 Hill formula | H_2O_4S | KMnO_4 | C42H16Cr7N26O24 | H_2O | CO_2 | K_2O_4S | MnSO_4 | Cr_2K_2O_7 | KNO_3 name | sulfuric acid | potassium permanganate | | water | carbon dioxide | potassium sulfate | manganese(II) sulfate | potassium dichromate | potassium nitrate IUPAC name | sulfuric acid | potassium permanganate | | water | carbon dioxide | dipotassium sulfate | manganese(+2) cation sulfate | dipotassium oxido-(oxido-dioxochromio)oxy-dioxochromium | potassium nitrate
| sulfuric acid | potassium permanganate | (Cr(NH2)2(CO)6)4(Cr(CN)6)3 | water | carbon dioxide | potassium sulfate | manganese(II) sulfate | potassium dichromate | potassium nitrate formula | H_2SO_4 | KMnO_4 | (Cr(NH2)2(CO)6)4(Cr(CN)6)3 | H_2O | CO_2 | K_2SO_4 | MnSO_4 | K_2Cr_2O_7 | KNO_3 Hill formula | H_2O_4S | KMnO_4 | C42H16Cr7N26O24 | H_2O | CO_2 | K_2O_4S | MnSO_4 | Cr_2K_2O_7 | KNO_3 name | sulfuric acid | potassium permanganate | | water | carbon dioxide | potassium sulfate | manganese(II) sulfate | potassium dichromate | potassium nitrate IUPAC name | sulfuric acid | potassium permanganate | | water | carbon dioxide | dipotassium sulfate | manganese(+2) cation sulfate | dipotassium oxido-(oxido-dioxochromio)oxy-dioxochromium | potassium nitrate