Search

H2SO4 + Fe2O3 + CuI = H2O + I2 + CuSO4 + FeSO4

Input interpretation

H_2SO_4 sulfuric acid + Fe_2O_3 iron(III) oxide + CuI cuprous iodide ⟶ H_2O water + I_2 iodine + CuSO_4 copper(II) sulfate + FeSO_4 duretter
H_2SO_4 sulfuric acid + Fe_2O_3 iron(III) oxide + CuI cuprous iodide ⟶ H_2O water + I_2 iodine + CuSO_4 copper(II) sulfate + FeSO_4 duretter

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + Fe_2O_3 + CuI ⟶ H_2O + I_2 + CuSO_4 + FeSO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 Fe_2O_3 + c_3 CuI ⟶ c_4 H_2O + c_5 I_2 + c_6 CuSO_4 + c_7 FeSO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Fe, Cu and I: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 3 c_2 = c_4 + 4 c_6 + 4 c_7 S: | c_1 = c_6 + c_7 Fe: | 2 c_2 = c_7 Cu: | c_3 = c_6 I: | c_3 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_5 = 1 and solve the system of equations for the remaining coefficients: c_1 = 6 c_2 = 2 c_3 = 2 c_4 = 6 c_5 = 1 c_6 = 2 c_7 = 4 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 6 H_2SO_4 + 2 Fe_2O_3 + 2 CuI ⟶ 6 H_2O + I_2 + 2 CuSO_4 + 4 FeSO_4
Balance the chemical equation algebraically: H_2SO_4 + Fe_2O_3 + CuI ⟶ H_2O + I_2 + CuSO_4 + FeSO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 Fe_2O_3 + c_3 CuI ⟶ c_4 H_2O + c_5 I_2 + c_6 CuSO_4 + c_7 FeSO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Fe, Cu and I: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 3 c_2 = c_4 + 4 c_6 + 4 c_7 S: | c_1 = c_6 + c_7 Fe: | 2 c_2 = c_7 Cu: | c_3 = c_6 I: | c_3 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_5 = 1 and solve the system of equations for the remaining coefficients: c_1 = 6 c_2 = 2 c_3 = 2 c_4 = 6 c_5 = 1 c_6 = 2 c_7 = 4 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 6 H_2SO_4 + 2 Fe_2O_3 + 2 CuI ⟶ 6 H_2O + I_2 + 2 CuSO_4 + 4 FeSO_4

Structures

 + + ⟶ + + +
+ + ⟶ + + +

Names

sulfuric acid + iron(III) oxide + cuprous iodide ⟶ water + iodine + copper(II) sulfate + duretter
sulfuric acid + iron(III) oxide + cuprous iodide ⟶ water + iodine + copper(II) sulfate + duretter

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + Fe_2O_3 + CuI ⟶ H_2O + I_2 + CuSO_4 + FeSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 H_2SO_4 + 2 Fe_2O_3 + 2 CuI ⟶ 6 H_2O + I_2 + 2 CuSO_4 + 4 FeSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 6 | -6 Fe_2O_3 | 2 | -2 CuI | 2 | -2 H_2O | 6 | 6 I_2 | 1 | 1 CuSO_4 | 2 | 2 FeSO_4 | 4 | 4 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 6 | -6 | ([H2SO4])^(-6) Fe_2O_3 | 2 | -2 | ([Fe2O3])^(-2) CuI | 2 | -2 | ([CuI])^(-2) H_2O | 6 | 6 | ([H2O])^6 I_2 | 1 | 1 | [I2] CuSO_4 | 2 | 2 | ([CuSO4])^2 FeSO_4 | 4 | 4 | ([FeSO4])^4 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-6) ([Fe2O3])^(-2) ([CuI])^(-2) ([H2O])^6 [I2] ([CuSO4])^2 ([FeSO4])^4 = (([H2O])^6 [I2] ([CuSO4])^2 ([FeSO4])^4)/(([H2SO4])^6 ([Fe2O3])^2 ([CuI])^2)
Construct the equilibrium constant, K, expression for: H_2SO_4 + Fe_2O_3 + CuI ⟶ H_2O + I_2 + CuSO_4 + FeSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 H_2SO_4 + 2 Fe_2O_3 + 2 CuI ⟶ 6 H_2O + I_2 + 2 CuSO_4 + 4 FeSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 6 | -6 Fe_2O_3 | 2 | -2 CuI | 2 | -2 H_2O | 6 | 6 I_2 | 1 | 1 CuSO_4 | 2 | 2 FeSO_4 | 4 | 4 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 6 | -6 | ([H2SO4])^(-6) Fe_2O_3 | 2 | -2 | ([Fe2O3])^(-2) CuI | 2 | -2 | ([CuI])^(-2) H_2O | 6 | 6 | ([H2O])^6 I_2 | 1 | 1 | [I2] CuSO_4 | 2 | 2 | ([CuSO4])^2 FeSO_4 | 4 | 4 | ([FeSO4])^4 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-6) ([Fe2O3])^(-2) ([CuI])^(-2) ([H2O])^6 [I2] ([CuSO4])^2 ([FeSO4])^4 = (([H2O])^6 [I2] ([CuSO4])^2 ([FeSO4])^4)/(([H2SO4])^6 ([Fe2O3])^2 ([CuI])^2)

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + Fe_2O_3 + CuI ⟶ H_2O + I_2 + CuSO_4 + FeSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 H_2SO_4 + 2 Fe_2O_3 + 2 CuI ⟶ 6 H_2O + I_2 + 2 CuSO_4 + 4 FeSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 6 | -6 Fe_2O_3 | 2 | -2 CuI | 2 | -2 H_2O | 6 | 6 I_2 | 1 | 1 CuSO_4 | 2 | 2 FeSO_4 | 4 | 4 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 6 | -6 | -1/6 (Δ[H2SO4])/(Δt) Fe_2O_3 | 2 | -2 | -1/2 (Δ[Fe2O3])/(Δt) CuI | 2 | -2 | -1/2 (Δ[CuI])/(Δt) H_2O | 6 | 6 | 1/6 (Δ[H2O])/(Δt) I_2 | 1 | 1 | (Δ[I2])/(Δt) CuSO_4 | 2 | 2 | 1/2 (Δ[CuSO4])/(Δt) FeSO_4 | 4 | 4 | 1/4 (Δ[FeSO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/6 (Δ[H2SO4])/(Δt) = -1/2 (Δ[Fe2O3])/(Δt) = -1/2 (Δ[CuI])/(Δt) = 1/6 (Δ[H2O])/(Δt) = (Δ[I2])/(Δt) = 1/2 (Δ[CuSO4])/(Δt) = 1/4 (Δ[FeSO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + Fe_2O_3 + CuI ⟶ H_2O + I_2 + CuSO_4 + FeSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 H_2SO_4 + 2 Fe_2O_3 + 2 CuI ⟶ 6 H_2O + I_2 + 2 CuSO_4 + 4 FeSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 6 | -6 Fe_2O_3 | 2 | -2 CuI | 2 | -2 H_2O | 6 | 6 I_2 | 1 | 1 CuSO_4 | 2 | 2 FeSO_4 | 4 | 4 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 6 | -6 | -1/6 (Δ[H2SO4])/(Δt) Fe_2O_3 | 2 | -2 | -1/2 (Δ[Fe2O3])/(Δt) CuI | 2 | -2 | -1/2 (Δ[CuI])/(Δt) H_2O | 6 | 6 | 1/6 (Δ[H2O])/(Δt) I_2 | 1 | 1 | (Δ[I2])/(Δt) CuSO_4 | 2 | 2 | 1/2 (Δ[CuSO4])/(Δt) FeSO_4 | 4 | 4 | 1/4 (Δ[FeSO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/6 (Δ[H2SO4])/(Δt) = -1/2 (Δ[Fe2O3])/(Δt) = -1/2 (Δ[CuI])/(Δt) = 1/6 (Δ[H2O])/(Δt) = (Δ[I2])/(Δt) = 1/2 (Δ[CuSO4])/(Δt) = 1/4 (Δ[FeSO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | iron(III) oxide | cuprous iodide | water | iodine | copper(II) sulfate | duretter formula | H_2SO_4 | Fe_2O_3 | CuI | H_2O | I_2 | CuSO_4 | FeSO_4 Hill formula | H_2O_4S | Fe_2O_3 | CuI | H_2O | I_2 | CuO_4S | FeO_4S name | sulfuric acid | iron(III) oxide | cuprous iodide | water | iodine | copper(II) sulfate | duretter IUPAC name | sulfuric acid | | cuprous iodide | water | molecular iodine | copper sulfate | iron(+2) cation sulfate
| sulfuric acid | iron(III) oxide | cuprous iodide | water | iodine | copper(II) sulfate | duretter formula | H_2SO_4 | Fe_2O_3 | CuI | H_2O | I_2 | CuSO_4 | FeSO_4 Hill formula | H_2O_4S | Fe_2O_3 | CuI | H_2O | I_2 | CuO_4S | FeO_4S name | sulfuric acid | iron(III) oxide | cuprous iodide | water | iodine | copper(II) sulfate | duretter IUPAC name | sulfuric acid | | cuprous iodide | water | molecular iodine | copper sulfate | iron(+2) cation sulfate