Search

H2O + K2SO4 + MnSO4 + KNO3 = H2SO4 + KMnO4 + KNO2

Input interpretation

H_2O water + K_2SO_4 potassium sulfate + MnSO_4 manganese(II) sulfate + KNO_3 potassium nitrate ⟶ H_2SO_4 sulfuric acid + KMnO_4 potassium permanganate + KNO_2 potassium nitrite
H_2O water + K_2SO_4 potassium sulfate + MnSO_4 manganese(II) sulfate + KNO_3 potassium nitrate ⟶ H_2SO_4 sulfuric acid + KMnO_4 potassium permanganate + KNO_2 potassium nitrite

Balanced equation

Balance the chemical equation algebraically: H_2O + K_2SO_4 + MnSO_4 + KNO_3 ⟶ H_2SO_4 + KMnO_4 + KNO_2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 K_2SO_4 + c_3 MnSO_4 + c_4 KNO_3 ⟶ c_5 H_2SO_4 + c_6 KMnO_4 + c_7 KNO_2 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, K, S, Mn and N: H: | 2 c_1 = 2 c_5 O: | c_1 + 4 c_2 + 4 c_3 + 3 c_4 = 4 c_5 + 4 c_6 + 2 c_7 K: | 2 c_2 + c_4 = c_6 + c_7 S: | c_2 + c_3 = c_5 Mn: | c_3 = c_6 N: | c_4 = c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 1 c_3 = 2 c_4 = 5 c_5 = 3 c_6 = 2 c_7 = 5 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 3 H_2O + K_2SO_4 + 2 MnSO_4 + 5 KNO_3 ⟶ 3 H_2SO_4 + 2 KMnO_4 + 5 KNO_2
Balance the chemical equation algebraically: H_2O + K_2SO_4 + MnSO_4 + KNO_3 ⟶ H_2SO_4 + KMnO_4 + KNO_2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 K_2SO_4 + c_3 MnSO_4 + c_4 KNO_3 ⟶ c_5 H_2SO_4 + c_6 KMnO_4 + c_7 KNO_2 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, K, S, Mn and N: H: | 2 c_1 = 2 c_5 O: | c_1 + 4 c_2 + 4 c_3 + 3 c_4 = 4 c_5 + 4 c_6 + 2 c_7 K: | 2 c_2 + c_4 = c_6 + c_7 S: | c_2 + c_3 = c_5 Mn: | c_3 = c_6 N: | c_4 = c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 1 c_3 = 2 c_4 = 5 c_5 = 3 c_6 = 2 c_7 = 5 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 3 H_2O + K_2SO_4 + 2 MnSO_4 + 5 KNO_3 ⟶ 3 H_2SO_4 + 2 KMnO_4 + 5 KNO_2

Structures

 + + + ⟶ + +
+ + + ⟶ + +

Names

water + potassium sulfate + manganese(II) sulfate + potassium nitrate ⟶ sulfuric acid + potassium permanganate + potassium nitrite
water + potassium sulfate + manganese(II) sulfate + potassium nitrate ⟶ sulfuric acid + potassium permanganate + potassium nitrite

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2O + K_2SO_4 + MnSO_4 + KNO_3 ⟶ H_2SO_4 + KMnO_4 + KNO_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 H_2O + K_2SO_4 + 2 MnSO_4 + 5 KNO_3 ⟶ 3 H_2SO_4 + 2 KMnO_4 + 5 KNO_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 3 | -3 K_2SO_4 | 1 | -1 MnSO_4 | 2 | -2 KNO_3 | 5 | -5 H_2SO_4 | 3 | 3 KMnO_4 | 2 | 2 KNO_2 | 5 | 5 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 3 | -3 | ([H2O])^(-3) K_2SO_4 | 1 | -1 | ([K2SO4])^(-1) MnSO_4 | 2 | -2 | ([MnSO4])^(-2) KNO_3 | 5 | -5 | ([KNO3])^(-5) H_2SO_4 | 3 | 3 | ([H2SO4])^3 KMnO_4 | 2 | 2 | ([KMnO4])^2 KNO_2 | 5 | 5 | ([KNO2])^5 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2O])^(-3) ([K2SO4])^(-1) ([MnSO4])^(-2) ([KNO3])^(-5) ([H2SO4])^3 ([KMnO4])^2 ([KNO2])^5 = (([H2SO4])^3 ([KMnO4])^2 ([KNO2])^5)/(([H2O])^3 [K2SO4] ([MnSO4])^2 ([KNO3])^5)
Construct the equilibrium constant, K, expression for: H_2O + K_2SO_4 + MnSO_4 + KNO_3 ⟶ H_2SO_4 + KMnO_4 + KNO_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 H_2O + K_2SO_4 + 2 MnSO_4 + 5 KNO_3 ⟶ 3 H_2SO_4 + 2 KMnO_4 + 5 KNO_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 3 | -3 K_2SO_4 | 1 | -1 MnSO_4 | 2 | -2 KNO_3 | 5 | -5 H_2SO_4 | 3 | 3 KMnO_4 | 2 | 2 KNO_2 | 5 | 5 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 3 | -3 | ([H2O])^(-3) K_2SO_4 | 1 | -1 | ([K2SO4])^(-1) MnSO_4 | 2 | -2 | ([MnSO4])^(-2) KNO_3 | 5 | -5 | ([KNO3])^(-5) H_2SO_4 | 3 | 3 | ([H2SO4])^3 KMnO_4 | 2 | 2 | ([KMnO4])^2 KNO_2 | 5 | 5 | ([KNO2])^5 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2O])^(-3) ([K2SO4])^(-1) ([MnSO4])^(-2) ([KNO3])^(-5) ([H2SO4])^3 ([KMnO4])^2 ([KNO2])^5 = (([H2SO4])^3 ([KMnO4])^2 ([KNO2])^5)/(([H2O])^3 [K2SO4] ([MnSO4])^2 ([KNO3])^5)

Rate of reaction

Construct the rate of reaction expression for: H_2O + K_2SO_4 + MnSO_4 + KNO_3 ⟶ H_2SO_4 + KMnO_4 + KNO_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 H_2O + K_2SO_4 + 2 MnSO_4 + 5 KNO_3 ⟶ 3 H_2SO_4 + 2 KMnO_4 + 5 KNO_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 3 | -3 K_2SO_4 | 1 | -1 MnSO_4 | 2 | -2 KNO_3 | 5 | -5 H_2SO_4 | 3 | 3 KMnO_4 | 2 | 2 KNO_2 | 5 | 5 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 3 | -3 | -1/3 (Δ[H2O])/(Δt) K_2SO_4 | 1 | -1 | -(Δ[K2SO4])/(Δt) MnSO_4 | 2 | -2 | -1/2 (Δ[MnSO4])/(Δt) KNO_3 | 5 | -5 | -1/5 (Δ[KNO3])/(Δt) H_2SO_4 | 3 | 3 | 1/3 (Δ[H2SO4])/(Δt) KMnO_4 | 2 | 2 | 1/2 (Δ[KMnO4])/(Δt) KNO_2 | 5 | 5 | 1/5 (Δ[KNO2])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/3 (Δ[H2O])/(Δt) = -(Δ[K2SO4])/(Δt) = -1/2 (Δ[MnSO4])/(Δt) = -1/5 (Δ[KNO3])/(Δt) = 1/3 (Δ[H2SO4])/(Δt) = 1/2 (Δ[KMnO4])/(Δt) = 1/5 (Δ[KNO2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2O + K_2SO_4 + MnSO_4 + KNO_3 ⟶ H_2SO_4 + KMnO_4 + KNO_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 H_2O + K_2SO_4 + 2 MnSO_4 + 5 KNO_3 ⟶ 3 H_2SO_4 + 2 KMnO_4 + 5 KNO_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 3 | -3 K_2SO_4 | 1 | -1 MnSO_4 | 2 | -2 KNO_3 | 5 | -5 H_2SO_4 | 3 | 3 KMnO_4 | 2 | 2 KNO_2 | 5 | 5 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 3 | -3 | -1/3 (Δ[H2O])/(Δt) K_2SO_4 | 1 | -1 | -(Δ[K2SO4])/(Δt) MnSO_4 | 2 | -2 | -1/2 (Δ[MnSO4])/(Δt) KNO_3 | 5 | -5 | -1/5 (Δ[KNO3])/(Δt) H_2SO_4 | 3 | 3 | 1/3 (Δ[H2SO4])/(Δt) KMnO_4 | 2 | 2 | 1/2 (Δ[KMnO4])/(Δt) KNO_2 | 5 | 5 | 1/5 (Δ[KNO2])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/3 (Δ[H2O])/(Δt) = -(Δ[K2SO4])/(Δt) = -1/2 (Δ[MnSO4])/(Δt) = -1/5 (Δ[KNO3])/(Δt) = 1/3 (Δ[H2SO4])/(Δt) = 1/2 (Δ[KMnO4])/(Δt) = 1/5 (Δ[KNO2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | water | potassium sulfate | manganese(II) sulfate | potassium nitrate | sulfuric acid | potassium permanganate | potassium nitrite formula | H_2O | K_2SO_4 | MnSO_4 | KNO_3 | H_2SO_4 | KMnO_4 | KNO_2 Hill formula | H_2O | K_2O_4S | MnSO_4 | KNO_3 | H_2O_4S | KMnO_4 | KNO_2 name | water | potassium sulfate | manganese(II) sulfate | potassium nitrate | sulfuric acid | potassium permanganate | potassium nitrite IUPAC name | water | dipotassium sulfate | manganese(+2) cation sulfate | potassium nitrate | sulfuric acid | potassium permanganate | potassium nitrite
| water | potassium sulfate | manganese(II) sulfate | potassium nitrate | sulfuric acid | potassium permanganate | potassium nitrite formula | H_2O | K_2SO_4 | MnSO_4 | KNO_3 | H_2SO_4 | KMnO_4 | KNO_2 Hill formula | H_2O | K_2O_4S | MnSO_4 | KNO_3 | H_2O_4S | KMnO_4 | KNO_2 name | water | potassium sulfate | manganese(II) sulfate | potassium nitrate | sulfuric acid | potassium permanganate | potassium nitrite IUPAC name | water | dipotassium sulfate | manganese(+2) cation sulfate | potassium nitrate | sulfuric acid | potassium permanganate | potassium nitrite

Substance properties

 | water | potassium sulfate | manganese(II) sulfate | potassium nitrate | sulfuric acid | potassium permanganate | potassium nitrite molar mass | 18.015 g/mol | 174.25 g/mol | 150.99 g/mol | 101.1 g/mol | 98.07 g/mol | 158.03 g/mol | 85.103 g/mol phase | liquid (at STP) | | solid (at STP) | solid (at STP) | liquid (at STP) | solid (at STP) | solid (at STP) melting point | 0 °C | | 710 °C | 334 °C | 10.371 °C | 240 °C | 350 °C boiling point | 99.9839 °C | | | | 279.6 °C | |  density | 1 g/cm^3 | | 3.25 g/cm^3 | | 1.8305 g/cm^3 | 1 g/cm^3 | 1.915 g/cm^3 solubility in water | | soluble | soluble | soluble | very soluble | |  surface tension | 0.0728 N/m | | | | 0.0735 N/m | |  dynamic viscosity | 8.9×10^-4 Pa s (at 25 °C) | | | | 0.021 Pa s (at 25 °C) | |  odor | odorless | | | odorless | odorless | odorless |
| water | potassium sulfate | manganese(II) sulfate | potassium nitrate | sulfuric acid | potassium permanganate | potassium nitrite molar mass | 18.015 g/mol | 174.25 g/mol | 150.99 g/mol | 101.1 g/mol | 98.07 g/mol | 158.03 g/mol | 85.103 g/mol phase | liquid (at STP) | | solid (at STP) | solid (at STP) | liquid (at STP) | solid (at STP) | solid (at STP) melting point | 0 °C | | 710 °C | 334 °C | 10.371 °C | 240 °C | 350 °C boiling point | 99.9839 °C | | | | 279.6 °C | | density | 1 g/cm^3 | | 3.25 g/cm^3 | | 1.8305 g/cm^3 | 1 g/cm^3 | 1.915 g/cm^3 solubility in water | | soluble | soluble | soluble | very soluble | | surface tension | 0.0728 N/m | | | | 0.0735 N/m | | dynamic viscosity | 8.9×10^-4 Pa s (at 25 °C) | | | | 0.021 Pa s (at 25 °C) | | odor | odorless | | | odorless | odorless | odorless |

Units