Search

NaOH + FeSO4 + NaClO3 = H2O + NaCl + Na2SO4 + Na2FeO4

Input interpretation

NaOH sodium hydroxide + FeSO_4 duretter + NaClO_3 sodium chlorate ⟶ H_2O water + NaCl sodium chloride + Na_2SO_4 sodium sulfate + Na2FeO4
NaOH sodium hydroxide + FeSO_4 duretter + NaClO_3 sodium chlorate ⟶ H_2O water + NaCl sodium chloride + Na_2SO_4 sodium sulfate + Na2FeO4

Balanced equation

Balance the chemical equation algebraically: NaOH + FeSO_4 + NaClO_3 ⟶ H_2O + NaCl + Na_2SO_4 + Na2FeO4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 NaOH + c_2 FeSO_4 + c_3 NaClO_3 ⟶ c_4 H_2O + c_5 NaCl + c_6 Na_2SO_4 + c_7 Na2FeO4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, Na, O, Fe, S and Cl: H: | c_1 = 2 c_4 Na: | c_1 + c_3 = c_5 + 2 c_6 + 2 c_7 O: | c_1 + 4 c_2 + 3 c_3 = c_4 + 4 c_6 + 4 c_7 Fe: | c_2 = c_7 S: | c_2 = c_6 Cl: | c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 6 c_2 = 3/2 c_3 = 1 c_4 = 3 c_5 = 1 c_6 = 3/2 c_7 = 3/2 Multiply by the least common denominator, 2, to eliminate fractional coefficients: c_1 = 12 c_2 = 3 c_3 = 2 c_4 = 6 c_5 = 2 c_6 = 3 c_7 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 12 NaOH + 3 FeSO_4 + 2 NaClO_3 ⟶ 6 H_2O + 2 NaCl + 3 Na_2SO_4 + 3 Na2FeO4
Balance the chemical equation algebraically: NaOH + FeSO_4 + NaClO_3 ⟶ H_2O + NaCl + Na_2SO_4 + Na2FeO4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 NaOH + c_2 FeSO_4 + c_3 NaClO_3 ⟶ c_4 H_2O + c_5 NaCl + c_6 Na_2SO_4 + c_7 Na2FeO4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, Na, O, Fe, S and Cl: H: | c_1 = 2 c_4 Na: | c_1 + c_3 = c_5 + 2 c_6 + 2 c_7 O: | c_1 + 4 c_2 + 3 c_3 = c_4 + 4 c_6 + 4 c_7 Fe: | c_2 = c_7 S: | c_2 = c_6 Cl: | c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 6 c_2 = 3/2 c_3 = 1 c_4 = 3 c_5 = 1 c_6 = 3/2 c_7 = 3/2 Multiply by the least common denominator, 2, to eliminate fractional coefficients: c_1 = 12 c_2 = 3 c_3 = 2 c_4 = 6 c_5 = 2 c_6 = 3 c_7 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 12 NaOH + 3 FeSO_4 + 2 NaClO_3 ⟶ 6 H_2O + 2 NaCl + 3 Na_2SO_4 + 3 Na2FeO4

Structures

 + + ⟶ + + + Na2FeO4
+ + ⟶ + + + Na2FeO4

Names

sodium hydroxide + duretter + sodium chlorate ⟶ water + sodium chloride + sodium sulfate + Na2FeO4
sodium hydroxide + duretter + sodium chlorate ⟶ water + sodium chloride + sodium sulfate + Na2FeO4

Equilibrium constant

Construct the equilibrium constant, K, expression for: NaOH + FeSO_4 + NaClO_3 ⟶ H_2O + NaCl + Na_2SO_4 + Na2FeO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 12 NaOH + 3 FeSO_4 + 2 NaClO_3 ⟶ 6 H_2O + 2 NaCl + 3 Na_2SO_4 + 3 Na2FeO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i NaOH | 12 | -12 FeSO_4 | 3 | -3 NaClO_3 | 2 | -2 H_2O | 6 | 6 NaCl | 2 | 2 Na_2SO_4 | 3 | 3 Na2FeO4 | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression NaOH | 12 | -12 | ([NaOH])^(-12) FeSO_4 | 3 | -3 | ([FeSO4])^(-3) NaClO_3 | 2 | -2 | ([NaClO3])^(-2) H_2O | 6 | 6 | ([H2O])^6 NaCl | 2 | 2 | ([NaCl])^2 Na_2SO_4 | 3 | 3 | ([Na2SO4])^3 Na2FeO4 | 3 | 3 | ([Na2FeO4])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([NaOH])^(-12) ([FeSO4])^(-3) ([NaClO3])^(-2) ([H2O])^6 ([NaCl])^2 ([Na2SO4])^3 ([Na2FeO4])^3 = (([H2O])^6 ([NaCl])^2 ([Na2SO4])^3 ([Na2FeO4])^3)/(([NaOH])^12 ([FeSO4])^3 ([NaClO3])^2)
Construct the equilibrium constant, K, expression for: NaOH + FeSO_4 + NaClO_3 ⟶ H_2O + NaCl + Na_2SO_4 + Na2FeO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 12 NaOH + 3 FeSO_4 + 2 NaClO_3 ⟶ 6 H_2O + 2 NaCl + 3 Na_2SO_4 + 3 Na2FeO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i NaOH | 12 | -12 FeSO_4 | 3 | -3 NaClO_3 | 2 | -2 H_2O | 6 | 6 NaCl | 2 | 2 Na_2SO_4 | 3 | 3 Na2FeO4 | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression NaOH | 12 | -12 | ([NaOH])^(-12) FeSO_4 | 3 | -3 | ([FeSO4])^(-3) NaClO_3 | 2 | -2 | ([NaClO3])^(-2) H_2O | 6 | 6 | ([H2O])^6 NaCl | 2 | 2 | ([NaCl])^2 Na_2SO_4 | 3 | 3 | ([Na2SO4])^3 Na2FeO4 | 3 | 3 | ([Na2FeO4])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([NaOH])^(-12) ([FeSO4])^(-3) ([NaClO3])^(-2) ([H2O])^6 ([NaCl])^2 ([Na2SO4])^3 ([Na2FeO4])^3 = (([H2O])^6 ([NaCl])^2 ([Na2SO4])^3 ([Na2FeO4])^3)/(([NaOH])^12 ([FeSO4])^3 ([NaClO3])^2)

Rate of reaction

Construct the rate of reaction expression for: NaOH + FeSO_4 + NaClO_3 ⟶ H_2O + NaCl + Na_2SO_4 + Na2FeO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 12 NaOH + 3 FeSO_4 + 2 NaClO_3 ⟶ 6 H_2O + 2 NaCl + 3 Na_2SO_4 + 3 Na2FeO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i NaOH | 12 | -12 FeSO_4 | 3 | -3 NaClO_3 | 2 | -2 H_2O | 6 | 6 NaCl | 2 | 2 Na_2SO_4 | 3 | 3 Na2FeO4 | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term NaOH | 12 | -12 | -1/12 (Δ[NaOH])/(Δt) FeSO_4 | 3 | -3 | -1/3 (Δ[FeSO4])/(Δt) NaClO_3 | 2 | -2 | -1/2 (Δ[NaClO3])/(Δt) H_2O | 6 | 6 | 1/6 (Δ[H2O])/(Δt) NaCl | 2 | 2 | 1/2 (Δ[NaCl])/(Δt) Na_2SO_4 | 3 | 3 | 1/3 (Δ[Na2SO4])/(Δt) Na2FeO4 | 3 | 3 | 1/3 (Δ[Na2FeO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/12 (Δ[NaOH])/(Δt) = -1/3 (Δ[FeSO4])/(Δt) = -1/2 (Δ[NaClO3])/(Δt) = 1/6 (Δ[H2O])/(Δt) = 1/2 (Δ[NaCl])/(Δt) = 1/3 (Δ[Na2SO4])/(Δt) = 1/3 (Δ[Na2FeO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: NaOH + FeSO_4 + NaClO_3 ⟶ H_2O + NaCl + Na_2SO_4 + Na2FeO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 12 NaOH + 3 FeSO_4 + 2 NaClO_3 ⟶ 6 H_2O + 2 NaCl + 3 Na_2SO_4 + 3 Na2FeO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i NaOH | 12 | -12 FeSO_4 | 3 | -3 NaClO_3 | 2 | -2 H_2O | 6 | 6 NaCl | 2 | 2 Na_2SO_4 | 3 | 3 Na2FeO4 | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term NaOH | 12 | -12 | -1/12 (Δ[NaOH])/(Δt) FeSO_4 | 3 | -3 | -1/3 (Δ[FeSO4])/(Δt) NaClO_3 | 2 | -2 | -1/2 (Δ[NaClO3])/(Δt) H_2O | 6 | 6 | 1/6 (Δ[H2O])/(Δt) NaCl | 2 | 2 | 1/2 (Δ[NaCl])/(Δt) Na_2SO_4 | 3 | 3 | 1/3 (Δ[Na2SO4])/(Δt) Na2FeO4 | 3 | 3 | 1/3 (Δ[Na2FeO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/12 (Δ[NaOH])/(Δt) = -1/3 (Δ[FeSO4])/(Δt) = -1/2 (Δ[NaClO3])/(Δt) = 1/6 (Δ[H2O])/(Δt) = 1/2 (Δ[NaCl])/(Δt) = 1/3 (Δ[Na2SO4])/(Δt) = 1/3 (Δ[Na2FeO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sodium hydroxide | duretter | sodium chlorate | water | sodium chloride | sodium sulfate | Na2FeO4 formula | NaOH | FeSO_4 | NaClO_3 | H_2O | NaCl | Na_2SO_4 | Na2FeO4 Hill formula | HNaO | FeO_4S | ClNaO_3 | H_2O | ClNa | Na_2O_4S | FeNa2O4 name | sodium hydroxide | duretter | sodium chlorate | water | sodium chloride | sodium sulfate |  IUPAC name | sodium hydroxide | iron(+2) cation sulfate | sodium chlorate | water | sodium chloride | disodium sulfate |
| sodium hydroxide | duretter | sodium chlorate | water | sodium chloride | sodium sulfate | Na2FeO4 formula | NaOH | FeSO_4 | NaClO_3 | H_2O | NaCl | Na_2SO_4 | Na2FeO4 Hill formula | HNaO | FeO_4S | ClNaO_3 | H_2O | ClNa | Na_2O_4S | FeNa2O4 name | sodium hydroxide | duretter | sodium chlorate | water | sodium chloride | sodium sulfate | IUPAC name | sodium hydroxide | iron(+2) cation sulfate | sodium chlorate | water | sodium chloride | disodium sulfate |

Substance properties

 | sodium hydroxide | duretter | sodium chlorate | water | sodium chloride | sodium sulfate | Na2FeO4 molar mass | 39.997 g/mol | 151.9 g/mol | 106.4 g/mol | 18.015 g/mol | 58.44 g/mol | 142.04 g/mol | 165.82 g/mol phase | solid (at STP) | | liquid (at STP) | liquid (at STP) | solid (at STP) | solid (at STP) |  melting point | 323 °C | | | 0 °C | 801 °C | 884 °C |  boiling point | 1390 °C | | 106 °C | 99.9839 °C | 1413 °C | 1429 °C |  density | 2.13 g/cm^3 | 2.841 g/cm^3 | 1.3 g/cm^3 | 1 g/cm^3 | 2.16 g/cm^3 | 2.68 g/cm^3 |  solubility in water | soluble | | very soluble | | soluble | soluble |  surface tension | 0.07435 N/m | | | 0.0728 N/m | | |  dynamic viscosity | 0.004 Pa s (at 350 °C) | | 0.00542 Pa s (at 286 °C) | 8.9×10^-4 Pa s (at 25 °C) | | |  odor | | | odorless | odorless | odorless | |
| sodium hydroxide | duretter | sodium chlorate | water | sodium chloride | sodium sulfate | Na2FeO4 molar mass | 39.997 g/mol | 151.9 g/mol | 106.4 g/mol | 18.015 g/mol | 58.44 g/mol | 142.04 g/mol | 165.82 g/mol phase | solid (at STP) | | liquid (at STP) | liquid (at STP) | solid (at STP) | solid (at STP) | melting point | 323 °C | | | 0 °C | 801 °C | 884 °C | boiling point | 1390 °C | | 106 °C | 99.9839 °C | 1413 °C | 1429 °C | density | 2.13 g/cm^3 | 2.841 g/cm^3 | 1.3 g/cm^3 | 1 g/cm^3 | 2.16 g/cm^3 | 2.68 g/cm^3 | solubility in water | soluble | | very soluble | | soluble | soluble | surface tension | 0.07435 N/m | | | 0.0728 N/m | | | dynamic viscosity | 0.004 Pa s (at 350 °C) | | 0.00542 Pa s (at 286 °C) | 8.9×10^-4 Pa s (at 25 °C) | | | odor | | | odorless | odorless | odorless | |

Units