Search

Ca(NO3)2 + (NH4)2CO3 = CaCO3 + NH4NO3

Input interpretation

Ca(NO_3)_2 calcium nitrate + (NH_4)_2CO_3 ammonium carbonate ⟶ CaCO_3 calcium carbonate + NH_4NO_3 ammonium nitrate
Ca(NO_3)_2 calcium nitrate + (NH_4)_2CO_3 ammonium carbonate ⟶ CaCO_3 calcium carbonate + NH_4NO_3 ammonium nitrate

Balanced equation

Balance the chemical equation algebraically: Ca(NO_3)_2 + (NH_4)_2CO_3 ⟶ CaCO_3 + NH_4NO_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Ca(NO_3)_2 + c_2 (NH_4)_2CO_3 ⟶ c_3 CaCO_3 + c_4 NH_4NO_3 Set the number of atoms in the reactants equal to the number of atoms in the products for Ca, N, O, C and H: Ca: | c_1 = c_3 N: | 2 c_1 + 2 c_2 = 2 c_4 O: | 6 c_1 + 3 c_2 = 3 c_3 + 3 c_4 C: | c_2 = c_3 H: | 8 c_2 = 4 c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 1 c_4 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | Ca(NO_3)_2 + (NH_4)_2CO_3 ⟶ CaCO_3 + 2 NH_4NO_3
Balance the chemical equation algebraically: Ca(NO_3)_2 + (NH_4)_2CO_3 ⟶ CaCO_3 + NH_4NO_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Ca(NO_3)_2 + c_2 (NH_4)_2CO_3 ⟶ c_3 CaCO_3 + c_4 NH_4NO_3 Set the number of atoms in the reactants equal to the number of atoms in the products for Ca, N, O, C and H: Ca: | c_1 = c_3 N: | 2 c_1 + 2 c_2 = 2 c_4 O: | 6 c_1 + 3 c_2 = 3 c_3 + 3 c_4 C: | c_2 = c_3 H: | 8 c_2 = 4 c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 1 c_4 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | Ca(NO_3)_2 + (NH_4)_2CO_3 ⟶ CaCO_3 + 2 NH_4NO_3

Structures

 + ⟶ +
+ ⟶ +

Names

calcium nitrate + ammonium carbonate ⟶ calcium carbonate + ammonium nitrate
calcium nitrate + ammonium carbonate ⟶ calcium carbonate + ammonium nitrate

Equilibrium constant

Construct the equilibrium constant, K, expression for: Ca(NO_3)_2 + (NH_4)_2CO_3 ⟶ CaCO_3 + NH_4NO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: Ca(NO_3)_2 + (NH_4)_2CO_3 ⟶ CaCO_3 + 2 NH_4NO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Ca(NO_3)_2 | 1 | -1 (NH_4)_2CO_3 | 1 | -1 CaCO_3 | 1 | 1 NH_4NO_3 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Ca(NO_3)_2 | 1 | -1 | ([Ca(NO3)2])^(-1) (NH_4)_2CO_3 | 1 | -1 | ([(NH4)2CO3])^(-1) CaCO_3 | 1 | 1 | [CaCO3] NH_4NO_3 | 2 | 2 | ([NH4NO3])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([Ca(NO3)2])^(-1) ([(NH4)2CO3])^(-1) [CaCO3] ([NH4NO3])^2 = ([CaCO3] ([NH4NO3])^2)/([Ca(NO3)2] [(NH4)2CO3])
Construct the equilibrium constant, K, expression for: Ca(NO_3)_2 + (NH_4)_2CO_3 ⟶ CaCO_3 + NH_4NO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: Ca(NO_3)_2 + (NH_4)_2CO_3 ⟶ CaCO_3 + 2 NH_4NO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Ca(NO_3)_2 | 1 | -1 (NH_4)_2CO_3 | 1 | -1 CaCO_3 | 1 | 1 NH_4NO_3 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Ca(NO_3)_2 | 1 | -1 | ([Ca(NO3)2])^(-1) (NH_4)_2CO_3 | 1 | -1 | ([(NH4)2CO3])^(-1) CaCO_3 | 1 | 1 | [CaCO3] NH_4NO_3 | 2 | 2 | ([NH4NO3])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([Ca(NO3)2])^(-1) ([(NH4)2CO3])^(-1) [CaCO3] ([NH4NO3])^2 = ([CaCO3] ([NH4NO3])^2)/([Ca(NO3)2] [(NH4)2CO3])

Rate of reaction

Construct the rate of reaction expression for: Ca(NO_3)_2 + (NH_4)_2CO_3 ⟶ CaCO_3 + NH_4NO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: Ca(NO_3)_2 + (NH_4)_2CO_3 ⟶ CaCO_3 + 2 NH_4NO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Ca(NO_3)_2 | 1 | -1 (NH_4)_2CO_3 | 1 | -1 CaCO_3 | 1 | 1 NH_4NO_3 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Ca(NO_3)_2 | 1 | -1 | -(Δ[Ca(NO3)2])/(Δt) (NH_4)_2CO_3 | 1 | -1 | -(Δ[(NH4)2CO3])/(Δt) CaCO_3 | 1 | 1 | (Δ[CaCO3])/(Δt) NH_4NO_3 | 2 | 2 | 1/2 (Δ[NH4NO3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -(Δ[Ca(NO3)2])/(Δt) = -(Δ[(NH4)2CO3])/(Δt) = (Δ[CaCO3])/(Δt) = 1/2 (Δ[NH4NO3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: Ca(NO_3)_2 + (NH_4)_2CO_3 ⟶ CaCO_3 + NH_4NO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: Ca(NO_3)_2 + (NH_4)_2CO_3 ⟶ CaCO_3 + 2 NH_4NO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Ca(NO_3)_2 | 1 | -1 (NH_4)_2CO_3 | 1 | -1 CaCO_3 | 1 | 1 NH_4NO_3 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Ca(NO_3)_2 | 1 | -1 | -(Δ[Ca(NO3)2])/(Δt) (NH_4)_2CO_3 | 1 | -1 | -(Δ[(NH4)2CO3])/(Δt) CaCO_3 | 1 | 1 | (Δ[CaCO3])/(Δt) NH_4NO_3 | 2 | 2 | 1/2 (Δ[NH4NO3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[Ca(NO3)2])/(Δt) = -(Δ[(NH4)2CO3])/(Δt) = (Δ[CaCO3])/(Δt) = 1/2 (Δ[NH4NO3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | calcium nitrate | ammonium carbonate | calcium carbonate | ammonium nitrate formula | Ca(NO_3)_2 | (NH_4)_2CO_3 | CaCO_3 | NH_4NO_3 Hill formula | CaN_2O_6 | CH_8N_2O_3 | CCaO_3 | H_4N_2O_3 name | calcium nitrate | ammonium carbonate | calcium carbonate | ammonium nitrate IUPAC name | calcium dinitrate | | calcium carbonate |
| calcium nitrate | ammonium carbonate | calcium carbonate | ammonium nitrate formula | Ca(NO_3)_2 | (NH_4)_2CO_3 | CaCO_3 | NH_4NO_3 Hill formula | CaN_2O_6 | CH_8N_2O_3 | CCaO_3 | H_4N_2O_3 name | calcium nitrate | ammonium carbonate | calcium carbonate | ammonium nitrate IUPAC name | calcium dinitrate | | calcium carbonate |

Substance properties

 | calcium nitrate | ammonium carbonate | calcium carbonate | ammonium nitrate molar mass | 164.09 g/mol | 96.09 g/mol | 100.09 g/mol | 80.04 g/mol phase | solid (at STP) | solid (at STP) | solid (at STP) | solid (at STP) melting point | 562 °C | 58 °C | 1340 °C | 169 °C boiling point | | | | 210 °C density | 2.5 g/cm^3 | 1.5 g/cm^3 | 2.71 g/cm^3 | 1.73 g/cm^3 solubility in water | soluble | soluble | insoluble |  odor | | | | odorless
| calcium nitrate | ammonium carbonate | calcium carbonate | ammonium nitrate molar mass | 164.09 g/mol | 96.09 g/mol | 100.09 g/mol | 80.04 g/mol phase | solid (at STP) | solid (at STP) | solid (at STP) | solid (at STP) melting point | 562 °C | 58 °C | 1340 °C | 169 °C boiling point | | | | 210 °C density | 2.5 g/cm^3 | 1.5 g/cm^3 | 2.71 g/cm^3 | 1.73 g/cm^3 solubility in water | soluble | soluble | insoluble | odor | | | | odorless

Units