Search

KOH + KMnO4 + FeSO4 = K2SO4 + K2MnO4 + Fe(OH)3

Input interpretation

KOH potassium hydroxide + KMnO_4 potassium permanganate + FeSO_4 duretter ⟶ K_2SO_4 potassium sulfate + K_2MnO_4 potassium manganate + Fe(OH)_3 iron(III) hydroxide
KOH potassium hydroxide + KMnO_4 potassium permanganate + FeSO_4 duretter ⟶ K_2SO_4 potassium sulfate + K_2MnO_4 potassium manganate + Fe(OH)_3 iron(III) hydroxide

Balanced equation

Balance the chemical equation algebraically: KOH + KMnO_4 + FeSO_4 ⟶ K_2SO_4 + K_2MnO_4 + Fe(OH)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 KOH + c_2 KMnO_4 + c_3 FeSO_4 ⟶ c_4 K_2SO_4 + c_5 K_2MnO_4 + c_6 Fe(OH)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, K, O, Mn, Fe and S: H: | c_1 = 3 c_6 K: | c_1 + c_2 = 2 c_4 + 2 c_5 O: | c_1 + 4 c_2 + 4 c_3 = 4 c_4 + 4 c_5 + 3 c_6 Mn: | c_2 = c_5 Fe: | c_3 = c_6 S: | c_3 = c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 1 c_3 = 1 c_4 = 1 c_5 = 1 c_6 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 3 KOH + KMnO_4 + FeSO_4 ⟶ K_2SO_4 + K_2MnO_4 + Fe(OH)_3
Balance the chemical equation algebraically: KOH + KMnO_4 + FeSO_4 ⟶ K_2SO_4 + K_2MnO_4 + Fe(OH)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 KOH + c_2 KMnO_4 + c_3 FeSO_4 ⟶ c_4 K_2SO_4 + c_5 K_2MnO_4 + c_6 Fe(OH)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, K, O, Mn, Fe and S: H: | c_1 = 3 c_6 K: | c_1 + c_2 = 2 c_4 + 2 c_5 O: | c_1 + 4 c_2 + 4 c_3 = 4 c_4 + 4 c_5 + 3 c_6 Mn: | c_2 = c_5 Fe: | c_3 = c_6 S: | c_3 = c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 1 c_3 = 1 c_4 = 1 c_5 = 1 c_6 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 3 KOH + KMnO_4 + FeSO_4 ⟶ K_2SO_4 + K_2MnO_4 + Fe(OH)_3

Structures

 + + ⟶ + +
+ + ⟶ + +

Names

potassium hydroxide + potassium permanganate + duretter ⟶ potassium sulfate + potassium manganate + iron(III) hydroxide
potassium hydroxide + potassium permanganate + duretter ⟶ potassium sulfate + potassium manganate + iron(III) hydroxide

Equilibrium constant

Construct the equilibrium constant, K, expression for: KOH + KMnO_4 + FeSO_4 ⟶ K_2SO_4 + K_2MnO_4 + Fe(OH)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 KOH + KMnO_4 + FeSO_4 ⟶ K_2SO_4 + K_2MnO_4 + Fe(OH)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KOH | 3 | -3 KMnO_4 | 1 | -1 FeSO_4 | 1 | -1 K_2SO_4 | 1 | 1 K_2MnO_4 | 1 | 1 Fe(OH)_3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression KOH | 3 | -3 | ([KOH])^(-3) KMnO_4 | 1 | -1 | ([KMnO4])^(-1) FeSO_4 | 1 | -1 | ([FeSO4])^(-1) K_2SO_4 | 1 | 1 | [K2SO4] K_2MnO_4 | 1 | 1 | [K2MnO4] Fe(OH)_3 | 1 | 1 | [Fe(OH)3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([KOH])^(-3) ([KMnO4])^(-1) ([FeSO4])^(-1) [K2SO4] [K2MnO4] [Fe(OH)3] = ([K2SO4] [K2MnO4] [Fe(OH)3])/(([KOH])^3 [KMnO4] [FeSO4])
Construct the equilibrium constant, K, expression for: KOH + KMnO_4 + FeSO_4 ⟶ K_2SO_4 + K_2MnO_4 + Fe(OH)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 KOH + KMnO_4 + FeSO_4 ⟶ K_2SO_4 + K_2MnO_4 + Fe(OH)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KOH | 3 | -3 KMnO_4 | 1 | -1 FeSO_4 | 1 | -1 K_2SO_4 | 1 | 1 K_2MnO_4 | 1 | 1 Fe(OH)_3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression KOH | 3 | -3 | ([KOH])^(-3) KMnO_4 | 1 | -1 | ([KMnO4])^(-1) FeSO_4 | 1 | -1 | ([FeSO4])^(-1) K_2SO_4 | 1 | 1 | [K2SO4] K_2MnO_4 | 1 | 1 | [K2MnO4] Fe(OH)_3 | 1 | 1 | [Fe(OH)3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([KOH])^(-3) ([KMnO4])^(-1) ([FeSO4])^(-1) [K2SO4] [K2MnO4] [Fe(OH)3] = ([K2SO4] [K2MnO4] [Fe(OH)3])/(([KOH])^3 [KMnO4] [FeSO4])

Rate of reaction

Construct the rate of reaction expression for: KOH + KMnO_4 + FeSO_4 ⟶ K_2SO_4 + K_2MnO_4 + Fe(OH)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 KOH + KMnO_4 + FeSO_4 ⟶ K_2SO_4 + K_2MnO_4 + Fe(OH)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KOH | 3 | -3 KMnO_4 | 1 | -1 FeSO_4 | 1 | -1 K_2SO_4 | 1 | 1 K_2MnO_4 | 1 | 1 Fe(OH)_3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term KOH | 3 | -3 | -1/3 (Δ[KOH])/(Δt) KMnO_4 | 1 | -1 | -(Δ[KMnO4])/(Δt) FeSO_4 | 1 | -1 | -(Δ[FeSO4])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) K_2MnO_4 | 1 | 1 | (Δ[K2MnO4])/(Δt) Fe(OH)_3 | 1 | 1 | (Δ[Fe(OH)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/3 (Δ[KOH])/(Δt) = -(Δ[KMnO4])/(Δt) = -(Δ[FeSO4])/(Δt) = (Δ[K2SO4])/(Δt) = (Δ[K2MnO4])/(Δt) = (Δ[Fe(OH)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: KOH + KMnO_4 + FeSO_4 ⟶ K_2SO_4 + K_2MnO_4 + Fe(OH)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 KOH + KMnO_4 + FeSO_4 ⟶ K_2SO_4 + K_2MnO_4 + Fe(OH)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i KOH | 3 | -3 KMnO_4 | 1 | -1 FeSO_4 | 1 | -1 K_2SO_4 | 1 | 1 K_2MnO_4 | 1 | 1 Fe(OH)_3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term KOH | 3 | -3 | -1/3 (Δ[KOH])/(Δt) KMnO_4 | 1 | -1 | -(Δ[KMnO4])/(Δt) FeSO_4 | 1 | -1 | -(Δ[FeSO4])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) K_2MnO_4 | 1 | 1 | (Δ[K2MnO4])/(Δt) Fe(OH)_3 | 1 | 1 | (Δ[Fe(OH)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/3 (Δ[KOH])/(Δt) = -(Δ[KMnO4])/(Δt) = -(Δ[FeSO4])/(Δt) = (Δ[K2SO4])/(Δt) = (Δ[K2MnO4])/(Δt) = (Δ[Fe(OH)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | potassium hydroxide | potassium permanganate | duretter | potassium sulfate | potassium manganate | iron(III) hydroxide formula | KOH | KMnO_4 | FeSO_4 | K_2SO_4 | K_2MnO_4 | Fe(OH)_3 Hill formula | HKO | KMnO_4 | FeO_4S | K_2O_4S | K_2MnO_4 | FeH_3O_3 name | potassium hydroxide | potassium permanganate | duretter | potassium sulfate | potassium manganate | iron(III) hydroxide IUPAC name | potassium hydroxide | potassium permanganate | iron(+2) cation sulfate | dipotassium sulfate | dipotassium dioxido-dioxomanganese | ferric trihydroxide
| potassium hydroxide | potassium permanganate | duretter | potassium sulfate | potassium manganate | iron(III) hydroxide formula | KOH | KMnO_4 | FeSO_4 | K_2SO_4 | K_2MnO_4 | Fe(OH)_3 Hill formula | HKO | KMnO_4 | FeO_4S | K_2O_4S | K_2MnO_4 | FeH_3O_3 name | potassium hydroxide | potassium permanganate | duretter | potassium sulfate | potassium manganate | iron(III) hydroxide IUPAC name | potassium hydroxide | potassium permanganate | iron(+2) cation sulfate | dipotassium sulfate | dipotassium dioxido-dioxomanganese | ferric trihydroxide

Substance properties

 | potassium hydroxide | potassium permanganate | duretter | potassium sulfate | potassium manganate | iron(III) hydroxide molar mass | 56.105 g/mol | 158.03 g/mol | 151.9 g/mol | 174.25 g/mol | 197.13 g/mol | 106.87 g/mol phase | solid (at STP) | solid (at STP) | | | solid (at STP) |  melting point | 406 °C | 240 °C | | | 190 °C |  boiling point | 1327 °C | | | | |  density | 2.044 g/cm^3 | 1 g/cm^3 | 2.841 g/cm^3 | | |  solubility in water | soluble | | | soluble | decomposes |  dynamic viscosity | 0.001 Pa s (at 550 °C) | | | | |  odor | | odorless | | | |
| potassium hydroxide | potassium permanganate | duretter | potassium sulfate | potassium manganate | iron(III) hydroxide molar mass | 56.105 g/mol | 158.03 g/mol | 151.9 g/mol | 174.25 g/mol | 197.13 g/mol | 106.87 g/mol phase | solid (at STP) | solid (at STP) | | | solid (at STP) | melting point | 406 °C | 240 °C | | | 190 °C | boiling point | 1327 °C | | | | | density | 2.044 g/cm^3 | 1 g/cm^3 | 2.841 g/cm^3 | | | solubility in water | soluble | | | soluble | decomposes | dynamic viscosity | 0.001 Pa s (at 550 °C) | | | | | odor | | odorless | | | |

Units