Search

H2SO4 + Na2SO4 = NaHSO4

Input interpretation

H_2SO_4 sulfuric acid + Na_2SO_4 sodium sulfate ⟶ NaHSO_4 sodium bisulfate
H_2SO_4 sulfuric acid + Na_2SO_4 sodium sulfate ⟶ NaHSO_4 sodium bisulfate

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + Na_2SO_4 ⟶ NaHSO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 Na_2SO_4 ⟶ c_3 NaHSO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S and Na: H: | 2 c_1 = c_3 O: | 4 c_1 + 4 c_2 = 4 c_3 S: | c_1 + c_2 = c_3 Na: | 2 c_2 = c_3 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | H_2SO_4 + Na_2SO_4 ⟶ 2 NaHSO_4
Balance the chemical equation algebraically: H_2SO_4 + Na_2SO_4 ⟶ NaHSO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 Na_2SO_4 ⟶ c_3 NaHSO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S and Na: H: | 2 c_1 = c_3 O: | 4 c_1 + 4 c_2 = 4 c_3 S: | c_1 + c_2 = c_3 Na: | 2 c_2 = c_3 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | H_2SO_4 + Na_2SO_4 ⟶ 2 NaHSO_4

Structures

 + ⟶
+ ⟶

Names

sulfuric acid + sodium sulfate ⟶ sodium bisulfate
sulfuric acid + sodium sulfate ⟶ sodium bisulfate

Reaction thermodynamics

Enthalpy

 | sulfuric acid | sodium sulfate | sodium bisulfate molecular enthalpy | -814 kJ/mol | -1387 kJ/mol | -1126 kJ/mol total enthalpy | -814 kJ/mol | -1387 kJ/mol | -2251 kJ/mol  | H_initial = -2201 kJ/mol | | H_final = -2251 kJ/mol ΔH_rxn^0 | -2251 kJ/mol - -2201 kJ/mol = -49.9 kJ/mol (exothermic) | |
| sulfuric acid | sodium sulfate | sodium bisulfate molecular enthalpy | -814 kJ/mol | -1387 kJ/mol | -1126 kJ/mol total enthalpy | -814 kJ/mol | -1387 kJ/mol | -2251 kJ/mol | H_initial = -2201 kJ/mol | | H_final = -2251 kJ/mol ΔH_rxn^0 | -2251 kJ/mol - -2201 kJ/mol = -49.9 kJ/mol (exothermic) | |

Gibbs free energy

 | sulfuric acid | sodium sulfate | sodium bisulfate molecular free energy | -690 kJ/mol | -1270 kJ/mol | -992.8 kJ/mol total free energy | -690 kJ/mol | -1270 kJ/mol | -1986 kJ/mol  | G_initial = -1960 kJ/mol | | G_final = -1986 kJ/mol ΔG_rxn^0 | -1986 kJ/mol - -1960 kJ/mol = -25.4 kJ/mol (exergonic) | |
| sulfuric acid | sodium sulfate | sodium bisulfate molecular free energy | -690 kJ/mol | -1270 kJ/mol | -992.8 kJ/mol total free energy | -690 kJ/mol | -1270 kJ/mol | -1986 kJ/mol | G_initial = -1960 kJ/mol | | G_final = -1986 kJ/mol ΔG_rxn^0 | -1986 kJ/mol - -1960 kJ/mol = -25.4 kJ/mol (exergonic) | |

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + Na_2SO_4 ⟶ NaHSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: H_2SO_4 + Na_2SO_4 ⟶ 2 NaHSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 Na_2SO_4 | 1 | -1 NaHSO_4 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 1 | -1 | ([H2SO4])^(-1) Na_2SO_4 | 1 | -1 | ([Na2SO4])^(-1) NaHSO_4 | 2 | 2 | ([NaHSO4])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-1) ([Na2SO4])^(-1) ([NaHSO4])^2 = ([NaHSO4])^2/([H2SO4] [Na2SO4])
Construct the equilibrium constant, K, expression for: H_2SO_4 + Na_2SO_4 ⟶ NaHSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: H_2SO_4 + Na_2SO_4 ⟶ 2 NaHSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 Na_2SO_4 | 1 | -1 NaHSO_4 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 1 | -1 | ([H2SO4])^(-1) Na_2SO_4 | 1 | -1 | ([Na2SO4])^(-1) NaHSO_4 | 2 | 2 | ([NaHSO4])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-1) ([Na2SO4])^(-1) ([NaHSO4])^2 = ([NaHSO4])^2/([H2SO4] [Na2SO4])

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + Na_2SO_4 ⟶ NaHSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: H_2SO_4 + Na_2SO_4 ⟶ 2 NaHSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 Na_2SO_4 | 1 | -1 NaHSO_4 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 1 | -1 | -(Δ[H2SO4])/(Δt) Na_2SO_4 | 1 | -1 | -(Δ[Na2SO4])/(Δt) NaHSO_4 | 2 | 2 | 1/2 (Δ[NaHSO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -(Δ[H2SO4])/(Δt) = -(Δ[Na2SO4])/(Δt) = 1/2 (Δ[NaHSO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + Na_2SO_4 ⟶ NaHSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: H_2SO_4 + Na_2SO_4 ⟶ 2 NaHSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 Na_2SO_4 | 1 | -1 NaHSO_4 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 1 | -1 | -(Δ[H2SO4])/(Δt) Na_2SO_4 | 1 | -1 | -(Δ[Na2SO4])/(Δt) NaHSO_4 | 2 | 2 | 1/2 (Δ[NaHSO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[H2SO4])/(Δt) = -(Δ[Na2SO4])/(Δt) = 1/2 (Δ[NaHSO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | sodium sulfate | sodium bisulfate formula | H_2SO_4 | Na_2SO_4 | NaHSO_4 Hill formula | H_2O_4S | Na_2O_4S | HNaO_4S name | sulfuric acid | sodium sulfate | sodium bisulfate IUPAC name | sulfuric acid | disodium sulfate |
| sulfuric acid | sodium sulfate | sodium bisulfate formula | H_2SO_4 | Na_2SO_4 | NaHSO_4 Hill formula | H_2O_4S | Na_2O_4S | HNaO_4S name | sulfuric acid | sodium sulfate | sodium bisulfate IUPAC name | sulfuric acid | disodium sulfate |

Substance properties

 | sulfuric acid | sodium sulfate | sodium bisulfate molar mass | 98.07 g/mol | 142.04 g/mol | 120.1 g/mol phase | liquid (at STP) | solid (at STP) | solid (at STP) melting point | 10.371 °C | 884 °C | 181.85 °C boiling point | 279.6 °C | 1429 °C |  density | 1.8305 g/cm^3 | 2.68 g/cm^3 | 1.8 g/cm^3 solubility in water | very soluble | soluble |  surface tension | 0.0735 N/m | |  dynamic viscosity | 0.021 Pa s (at 25 °C) | |  odor | odorless | |
| sulfuric acid | sodium sulfate | sodium bisulfate molar mass | 98.07 g/mol | 142.04 g/mol | 120.1 g/mol phase | liquid (at STP) | solid (at STP) | solid (at STP) melting point | 10.371 °C | 884 °C | 181.85 °C boiling point | 279.6 °C | 1429 °C | density | 1.8305 g/cm^3 | 2.68 g/cm^3 | 1.8 g/cm^3 solubility in water | very soluble | soluble | surface tension | 0.0735 N/m | | dynamic viscosity | 0.021 Pa s (at 25 °C) | | odor | odorless | |

Units