Search

Fe + HClO3 = H2O + FeCl3 + Fe(ClO3)3

Input interpretation

Fe iron + HClO3 ⟶ H_2O water + FeCl_3 iron(III) chloride + Fe(ClO3)3
Fe iron + HClO3 ⟶ H_2O water + FeCl_3 iron(III) chloride + Fe(ClO3)3

Balanced equation

Balance the chemical equation algebraically: Fe + HClO3 ⟶ H_2O + FeCl_3 + Fe(ClO3)3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Fe + c_2 HClO3 ⟶ c_3 H_2O + c_4 FeCl_3 + c_5 Fe(ClO3)3 Set the number of atoms in the reactants equal to the number of atoms in the products for Fe, H, Cl and O: Fe: | c_1 = c_4 + c_5 H: | c_2 = 2 c_3 Cl: | c_2 = 3 c_4 + 3 c_5 O: | 3 c_2 = c_3 + 9 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_4 = 1 and solve the system of equations for the remaining coefficients: c_1 = 6 c_2 = 18 c_3 = 9 c_4 = 1 c_5 = 5 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 6 Fe + 18 HClO3 ⟶ 9 H_2O + FeCl_3 + 5 Fe(ClO3)3
Balance the chemical equation algebraically: Fe + HClO3 ⟶ H_2O + FeCl_3 + Fe(ClO3)3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Fe + c_2 HClO3 ⟶ c_3 H_2O + c_4 FeCl_3 + c_5 Fe(ClO3)3 Set the number of atoms in the reactants equal to the number of atoms in the products for Fe, H, Cl and O: Fe: | c_1 = c_4 + c_5 H: | c_2 = 2 c_3 Cl: | c_2 = 3 c_4 + 3 c_5 O: | 3 c_2 = c_3 + 9 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_4 = 1 and solve the system of equations for the remaining coefficients: c_1 = 6 c_2 = 18 c_3 = 9 c_4 = 1 c_5 = 5 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 6 Fe + 18 HClO3 ⟶ 9 H_2O + FeCl_3 + 5 Fe(ClO3)3

Structures

 + HClO3 ⟶ + + Fe(ClO3)3
+ HClO3 ⟶ + + Fe(ClO3)3

Names

iron + HClO3 ⟶ water + iron(III) chloride + Fe(ClO3)3
iron + HClO3 ⟶ water + iron(III) chloride + Fe(ClO3)3

Equilibrium constant

Construct the equilibrium constant, K, expression for: Fe + HClO3 ⟶ H_2O + FeCl_3 + Fe(ClO3)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 Fe + 18 HClO3 ⟶ 9 H_2O + FeCl_3 + 5 Fe(ClO3)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Fe | 6 | -6 HClO3 | 18 | -18 H_2O | 9 | 9 FeCl_3 | 1 | 1 Fe(ClO3)3 | 5 | 5 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Fe | 6 | -6 | ([Fe])^(-6) HClO3 | 18 | -18 | ([HClO3])^(-18) H_2O | 9 | 9 | ([H2O])^9 FeCl_3 | 1 | 1 | [FeCl3] Fe(ClO3)3 | 5 | 5 | ([Fe(ClO3)3])^5 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([Fe])^(-6) ([HClO3])^(-18) ([H2O])^9 [FeCl3] ([Fe(ClO3)3])^5 = (([H2O])^9 [FeCl3] ([Fe(ClO3)3])^5)/(([Fe])^6 ([HClO3])^18)
Construct the equilibrium constant, K, expression for: Fe + HClO3 ⟶ H_2O + FeCl_3 + Fe(ClO3)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 Fe + 18 HClO3 ⟶ 9 H_2O + FeCl_3 + 5 Fe(ClO3)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Fe | 6 | -6 HClO3 | 18 | -18 H_2O | 9 | 9 FeCl_3 | 1 | 1 Fe(ClO3)3 | 5 | 5 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Fe | 6 | -6 | ([Fe])^(-6) HClO3 | 18 | -18 | ([HClO3])^(-18) H_2O | 9 | 9 | ([H2O])^9 FeCl_3 | 1 | 1 | [FeCl3] Fe(ClO3)3 | 5 | 5 | ([Fe(ClO3)3])^5 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([Fe])^(-6) ([HClO3])^(-18) ([H2O])^9 [FeCl3] ([Fe(ClO3)3])^5 = (([H2O])^9 [FeCl3] ([Fe(ClO3)3])^5)/(([Fe])^6 ([HClO3])^18)

Rate of reaction

Construct the rate of reaction expression for: Fe + HClO3 ⟶ H_2O + FeCl_3 + Fe(ClO3)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 Fe + 18 HClO3 ⟶ 9 H_2O + FeCl_3 + 5 Fe(ClO3)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Fe | 6 | -6 HClO3 | 18 | -18 H_2O | 9 | 9 FeCl_3 | 1 | 1 Fe(ClO3)3 | 5 | 5 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Fe | 6 | -6 | -1/6 (Δ[Fe])/(Δt) HClO3 | 18 | -18 | -1/18 (Δ[HClO3])/(Δt) H_2O | 9 | 9 | 1/9 (Δ[H2O])/(Δt) FeCl_3 | 1 | 1 | (Δ[FeCl3])/(Δt) Fe(ClO3)3 | 5 | 5 | 1/5 (Δ[Fe(ClO3)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/6 (Δ[Fe])/(Δt) = -1/18 (Δ[HClO3])/(Δt) = 1/9 (Δ[H2O])/(Δt) = (Δ[FeCl3])/(Δt) = 1/5 (Δ[Fe(ClO3)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: Fe + HClO3 ⟶ H_2O + FeCl_3 + Fe(ClO3)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 Fe + 18 HClO3 ⟶ 9 H_2O + FeCl_3 + 5 Fe(ClO3)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Fe | 6 | -6 HClO3 | 18 | -18 H_2O | 9 | 9 FeCl_3 | 1 | 1 Fe(ClO3)3 | 5 | 5 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Fe | 6 | -6 | -1/6 (Δ[Fe])/(Δt) HClO3 | 18 | -18 | -1/18 (Δ[HClO3])/(Δt) H_2O | 9 | 9 | 1/9 (Δ[H2O])/(Δt) FeCl_3 | 1 | 1 | (Δ[FeCl3])/(Δt) Fe(ClO3)3 | 5 | 5 | 1/5 (Δ[Fe(ClO3)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/6 (Δ[Fe])/(Δt) = -1/18 (Δ[HClO3])/(Δt) = 1/9 (Δ[H2O])/(Δt) = (Δ[FeCl3])/(Δt) = 1/5 (Δ[Fe(ClO3)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | iron | HClO3 | water | iron(III) chloride | Fe(ClO3)3 formula | Fe | HClO3 | H_2O | FeCl_3 | Fe(ClO3)3 Hill formula | Fe | HClO3 | H_2O | Cl_3Fe | Cl3FeO9 name | iron | | water | iron(III) chloride |  IUPAC name | iron | | water | trichloroiron |
| iron | HClO3 | water | iron(III) chloride | Fe(ClO3)3 formula | Fe | HClO3 | H_2O | FeCl_3 | Fe(ClO3)3 Hill formula | Fe | HClO3 | H_2O | Cl_3Fe | Cl3FeO9 name | iron | | water | iron(III) chloride | IUPAC name | iron | | water | trichloroiron |

Substance properties

 | iron | HClO3 | water | iron(III) chloride | Fe(ClO3)3 molar mass | 55.845 g/mol | 84.45 g/mol | 18.015 g/mol | 162.2 g/mol | 306.2 g/mol phase | solid (at STP) | | liquid (at STP) | solid (at STP) |  melting point | 1535 °C | | 0 °C | 304 °C |  boiling point | 2750 °C | | 99.9839 °C | |  density | 7.874 g/cm^3 | | 1 g/cm^3 | |  solubility in water | insoluble | | | |  surface tension | | | 0.0728 N/m | |  dynamic viscosity | | | 8.9×10^-4 Pa s (at 25 °C) | |  odor | | | odorless | |
| iron | HClO3 | water | iron(III) chloride | Fe(ClO3)3 molar mass | 55.845 g/mol | 84.45 g/mol | 18.015 g/mol | 162.2 g/mol | 306.2 g/mol phase | solid (at STP) | | liquid (at STP) | solid (at STP) | melting point | 1535 °C | | 0 °C | 304 °C | boiling point | 2750 °C | | 99.9839 °C | | density | 7.874 g/cm^3 | | 1 g/cm^3 | | solubility in water | insoluble | | | | surface tension | | | 0.0728 N/m | | dynamic viscosity | | | 8.9×10^-4 Pa s (at 25 °C) | | odor | | | odorless | |

Units