Search

H2SO4 + KMnO4 = H2O + K2SO4 + MnSO4 + O3

Input interpretation

H_2SO_4 sulfuric acid + KMnO_4 potassium permanganate ⟶ H_2O water + K_2SO_4 potassium sulfate + MnSO_4 manganese(II) sulfate + O_3 ozone
H_2SO_4 sulfuric acid + KMnO_4 potassium permanganate ⟶ H_2O water + K_2SO_4 potassium sulfate + MnSO_4 manganese(II) sulfate + O_3 ozone

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + KMnO_4 ⟶ H_2O + K_2SO_4 + MnSO_4 + O_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 KMnO_4 ⟶ c_3 H_2O + c_4 K_2SO_4 + c_5 MnSO_4 + c_6 O_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K and Mn: H: | 2 c_1 = 2 c_3 O: | 4 c_1 + 4 c_2 = c_3 + 4 c_4 + 4 c_5 + 3 c_6 S: | c_1 = c_4 + c_5 K: | c_2 = 2 c_4 Mn: | c_2 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_4 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 2 c_3 = 3 c_4 = 1 c_5 = 2 c_6 = 5/3 Multiply by the least common denominator, 3, to eliminate fractional coefficients: c_1 = 9 c_2 = 6 c_3 = 9 c_4 = 3 c_5 = 6 c_6 = 5 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 9 H_2SO_4 + 6 KMnO_4 ⟶ 9 H_2O + 3 K_2SO_4 + 6 MnSO_4 + 5 O_3
Balance the chemical equation algebraically: H_2SO_4 + KMnO_4 ⟶ H_2O + K_2SO_4 + MnSO_4 + O_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 KMnO_4 ⟶ c_3 H_2O + c_4 K_2SO_4 + c_5 MnSO_4 + c_6 O_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K and Mn: H: | 2 c_1 = 2 c_3 O: | 4 c_1 + 4 c_2 = c_3 + 4 c_4 + 4 c_5 + 3 c_6 S: | c_1 = c_4 + c_5 K: | c_2 = 2 c_4 Mn: | c_2 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_4 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 2 c_3 = 3 c_4 = 1 c_5 = 2 c_6 = 5/3 Multiply by the least common denominator, 3, to eliminate fractional coefficients: c_1 = 9 c_2 = 6 c_3 = 9 c_4 = 3 c_5 = 6 c_6 = 5 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 9 H_2SO_4 + 6 KMnO_4 ⟶ 9 H_2O + 3 K_2SO_4 + 6 MnSO_4 + 5 O_3

Structures

 + ⟶ + + +
+ ⟶ + + +

Names

sulfuric acid + potassium permanganate ⟶ water + potassium sulfate + manganese(II) sulfate + ozone
sulfuric acid + potassium permanganate ⟶ water + potassium sulfate + manganese(II) sulfate + ozone

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + KMnO_4 ⟶ H_2O + K_2SO_4 + MnSO_4 + O_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 9 H_2SO_4 + 6 KMnO_4 ⟶ 9 H_2O + 3 K_2SO_4 + 6 MnSO_4 + 5 O_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 9 | -9 KMnO_4 | 6 | -6 H_2O | 9 | 9 K_2SO_4 | 3 | 3 MnSO_4 | 6 | 6 O_3 | 5 | 5 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 9 | -9 | ([H2SO4])^(-9) KMnO_4 | 6 | -6 | ([KMnO4])^(-6) H_2O | 9 | 9 | ([H2O])^9 K_2SO_4 | 3 | 3 | ([K2SO4])^3 MnSO_4 | 6 | 6 | ([MnSO4])^6 O_3 | 5 | 5 | ([O3])^5 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-9) ([KMnO4])^(-6) ([H2O])^9 ([K2SO4])^3 ([MnSO4])^6 ([O3])^5 = (([H2O])^9 ([K2SO4])^3 ([MnSO4])^6 ([O3])^5)/(([H2SO4])^9 ([KMnO4])^6)
Construct the equilibrium constant, K, expression for: H_2SO_4 + KMnO_4 ⟶ H_2O + K_2SO_4 + MnSO_4 + O_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 9 H_2SO_4 + 6 KMnO_4 ⟶ 9 H_2O + 3 K_2SO_4 + 6 MnSO_4 + 5 O_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 9 | -9 KMnO_4 | 6 | -6 H_2O | 9 | 9 K_2SO_4 | 3 | 3 MnSO_4 | 6 | 6 O_3 | 5 | 5 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 9 | -9 | ([H2SO4])^(-9) KMnO_4 | 6 | -6 | ([KMnO4])^(-6) H_2O | 9 | 9 | ([H2O])^9 K_2SO_4 | 3 | 3 | ([K2SO4])^3 MnSO_4 | 6 | 6 | ([MnSO4])^6 O_3 | 5 | 5 | ([O3])^5 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-9) ([KMnO4])^(-6) ([H2O])^9 ([K2SO4])^3 ([MnSO4])^6 ([O3])^5 = (([H2O])^9 ([K2SO4])^3 ([MnSO4])^6 ([O3])^5)/(([H2SO4])^9 ([KMnO4])^6)

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + KMnO_4 ⟶ H_2O + K_2SO_4 + MnSO_4 + O_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 9 H_2SO_4 + 6 KMnO_4 ⟶ 9 H_2O + 3 K_2SO_4 + 6 MnSO_4 + 5 O_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 9 | -9 KMnO_4 | 6 | -6 H_2O | 9 | 9 K_2SO_4 | 3 | 3 MnSO_4 | 6 | 6 O_3 | 5 | 5 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 9 | -9 | -1/9 (Δ[H2SO4])/(Δt) KMnO_4 | 6 | -6 | -1/6 (Δ[KMnO4])/(Δt) H_2O | 9 | 9 | 1/9 (Δ[H2O])/(Δt) K_2SO_4 | 3 | 3 | 1/3 (Δ[K2SO4])/(Δt) MnSO_4 | 6 | 6 | 1/6 (Δ[MnSO4])/(Δt) O_3 | 5 | 5 | 1/5 (Δ[O3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/9 (Δ[H2SO4])/(Δt) = -1/6 (Δ[KMnO4])/(Δt) = 1/9 (Δ[H2O])/(Δt) = 1/3 (Δ[K2SO4])/(Δt) = 1/6 (Δ[MnSO4])/(Δt) = 1/5 (Δ[O3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + KMnO_4 ⟶ H_2O + K_2SO_4 + MnSO_4 + O_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 9 H_2SO_4 + 6 KMnO_4 ⟶ 9 H_2O + 3 K_2SO_4 + 6 MnSO_4 + 5 O_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 9 | -9 KMnO_4 | 6 | -6 H_2O | 9 | 9 K_2SO_4 | 3 | 3 MnSO_4 | 6 | 6 O_3 | 5 | 5 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 9 | -9 | -1/9 (Δ[H2SO4])/(Δt) KMnO_4 | 6 | -6 | -1/6 (Δ[KMnO4])/(Δt) H_2O | 9 | 9 | 1/9 (Δ[H2O])/(Δt) K_2SO_4 | 3 | 3 | 1/3 (Δ[K2SO4])/(Δt) MnSO_4 | 6 | 6 | 1/6 (Δ[MnSO4])/(Δt) O_3 | 5 | 5 | 1/5 (Δ[O3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/9 (Δ[H2SO4])/(Δt) = -1/6 (Δ[KMnO4])/(Δt) = 1/9 (Δ[H2O])/(Δt) = 1/3 (Δ[K2SO4])/(Δt) = 1/6 (Δ[MnSO4])/(Δt) = 1/5 (Δ[O3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | potassium permanganate | water | potassium sulfate | manganese(II) sulfate | ozone formula | H_2SO_4 | KMnO_4 | H_2O | K_2SO_4 | MnSO_4 | O_3 Hill formula | H_2O_4S | KMnO_4 | H_2O | K_2O_4S | MnSO_4 | O_3 name | sulfuric acid | potassium permanganate | water | potassium sulfate | manganese(II) sulfate | ozone IUPAC name | sulfuric acid | potassium permanganate | water | dipotassium sulfate | manganese(+2) cation sulfate | ozone
| sulfuric acid | potassium permanganate | water | potassium sulfate | manganese(II) sulfate | ozone formula | H_2SO_4 | KMnO_4 | H_2O | K_2SO_4 | MnSO_4 | O_3 Hill formula | H_2O_4S | KMnO_4 | H_2O | K_2O_4S | MnSO_4 | O_3 name | sulfuric acid | potassium permanganate | water | potassium sulfate | manganese(II) sulfate | ozone IUPAC name | sulfuric acid | potassium permanganate | water | dipotassium sulfate | manganese(+2) cation sulfate | ozone

Substance properties

 | sulfuric acid | potassium permanganate | water | potassium sulfate | manganese(II) sulfate | ozone molar mass | 98.07 g/mol | 158.03 g/mol | 18.015 g/mol | 174.25 g/mol | 150.99 g/mol | 47.997 g/mol phase | liquid (at STP) | solid (at STP) | liquid (at STP) | | solid (at STP) | gas (at STP) melting point | 10.371 °C | 240 °C | 0 °C | | 710 °C | -192.2 °C boiling point | 279.6 °C | | 99.9839 °C | | | -111.9 °C density | 1.8305 g/cm^3 | 1 g/cm^3 | 1 g/cm^3 | | 3.25 g/cm^3 | 0.001962 g/cm^3 (at 25 °C) solubility in water | very soluble | | | soluble | soluble |  surface tension | 0.0735 N/m | | 0.0728 N/m | | |  dynamic viscosity | 0.021 Pa s (at 25 °C) | | 8.9×10^-4 Pa s (at 25 °C) | | |  odor | odorless | odorless | odorless | | |
| sulfuric acid | potassium permanganate | water | potassium sulfate | manganese(II) sulfate | ozone molar mass | 98.07 g/mol | 158.03 g/mol | 18.015 g/mol | 174.25 g/mol | 150.99 g/mol | 47.997 g/mol phase | liquid (at STP) | solid (at STP) | liquid (at STP) | | solid (at STP) | gas (at STP) melting point | 10.371 °C | 240 °C | 0 °C | | 710 °C | -192.2 °C boiling point | 279.6 °C | | 99.9839 °C | | | -111.9 °C density | 1.8305 g/cm^3 | 1 g/cm^3 | 1 g/cm^3 | | 3.25 g/cm^3 | 0.001962 g/cm^3 (at 25 °C) solubility in water | very soluble | | | soluble | soluble | surface tension | 0.0735 N/m | | 0.0728 N/m | | | dynamic viscosity | 0.021 Pa s (at 25 °C) | | 8.9×10^-4 Pa s (at 25 °C) | | | odor | odorless | odorless | odorless | | |

Units