Search

(NH4)2SO4 + Ca(NO2)2 = H2O + N2 + CaSO4

Input interpretation

(NH_4)_2SO_4 ammonium sulfate + Ca(NO_2)_2 calcium nitrite ⟶ H_2O water + N_2 nitrogen + CaSO_4 calcium sulfate
(NH_4)_2SO_4 ammonium sulfate + Ca(NO_2)_2 calcium nitrite ⟶ H_2O water + N_2 nitrogen + CaSO_4 calcium sulfate

Balanced equation

Balance the chemical equation algebraically: (NH_4)_2SO_4 + Ca(NO_2)_2 ⟶ H_2O + N_2 + CaSO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 (NH_4)_2SO_4 + c_2 Ca(NO_2)_2 ⟶ c_3 H_2O + c_4 N_2 + c_5 CaSO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, N, O, S and Ca: H: | 8 c_1 = 2 c_3 N: | 2 c_1 + 2 c_2 = 2 c_4 O: | 4 c_1 + 4 c_2 = c_3 + 4 c_5 S: | c_1 = c_5 Ca: | c_2 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 4 c_4 = 2 c_5 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | (NH_4)_2SO_4 + Ca(NO_2)_2 ⟶ 4 H_2O + 2 N_2 + CaSO_4
Balance the chemical equation algebraically: (NH_4)_2SO_4 + Ca(NO_2)_2 ⟶ H_2O + N_2 + CaSO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 (NH_4)_2SO_4 + c_2 Ca(NO_2)_2 ⟶ c_3 H_2O + c_4 N_2 + c_5 CaSO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, N, O, S and Ca: H: | 8 c_1 = 2 c_3 N: | 2 c_1 + 2 c_2 = 2 c_4 O: | 4 c_1 + 4 c_2 = c_3 + 4 c_5 S: | c_1 = c_5 Ca: | c_2 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 4 c_4 = 2 c_5 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | (NH_4)_2SO_4 + Ca(NO_2)_2 ⟶ 4 H_2O + 2 N_2 + CaSO_4

Structures

 + ⟶ + +
+ ⟶ + +

Names

ammonium sulfate + calcium nitrite ⟶ water + nitrogen + calcium sulfate
ammonium sulfate + calcium nitrite ⟶ water + nitrogen + calcium sulfate

Equilibrium constant

Construct the equilibrium constant, K, expression for: (NH_4)_2SO_4 + Ca(NO_2)_2 ⟶ H_2O + N_2 + CaSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: (NH_4)_2SO_4 + Ca(NO_2)_2 ⟶ 4 H_2O + 2 N_2 + CaSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i (NH_4)_2SO_4 | 1 | -1 Ca(NO_2)_2 | 1 | -1 H_2O | 4 | 4 N_2 | 2 | 2 CaSO_4 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression (NH_4)_2SO_4 | 1 | -1 | ([(NH4)2SO4])^(-1) Ca(NO_2)_2 | 1 | -1 | ([Ca(NO2)2])^(-1) H_2O | 4 | 4 | ([H2O])^4 N_2 | 2 | 2 | ([N2])^2 CaSO_4 | 1 | 1 | [CaSO4] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([(NH4)2SO4])^(-1) ([Ca(NO2)2])^(-1) ([H2O])^4 ([N2])^2 [CaSO4] = (([H2O])^4 ([N2])^2 [CaSO4])/([(NH4)2SO4] [Ca(NO2)2])
Construct the equilibrium constant, K, expression for: (NH_4)_2SO_4 + Ca(NO_2)_2 ⟶ H_2O + N_2 + CaSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: (NH_4)_2SO_4 + Ca(NO_2)_2 ⟶ 4 H_2O + 2 N_2 + CaSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i (NH_4)_2SO_4 | 1 | -1 Ca(NO_2)_2 | 1 | -1 H_2O | 4 | 4 N_2 | 2 | 2 CaSO_4 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression (NH_4)_2SO_4 | 1 | -1 | ([(NH4)2SO4])^(-1) Ca(NO_2)_2 | 1 | -1 | ([Ca(NO2)2])^(-1) H_2O | 4 | 4 | ([H2O])^4 N_2 | 2 | 2 | ([N2])^2 CaSO_4 | 1 | 1 | [CaSO4] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([(NH4)2SO4])^(-1) ([Ca(NO2)2])^(-1) ([H2O])^4 ([N2])^2 [CaSO4] = (([H2O])^4 ([N2])^2 [CaSO4])/([(NH4)2SO4] [Ca(NO2)2])

Rate of reaction

Construct the rate of reaction expression for: (NH_4)_2SO_4 + Ca(NO_2)_2 ⟶ H_2O + N_2 + CaSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: (NH_4)_2SO_4 + Ca(NO_2)_2 ⟶ 4 H_2O + 2 N_2 + CaSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i (NH_4)_2SO_4 | 1 | -1 Ca(NO_2)_2 | 1 | -1 H_2O | 4 | 4 N_2 | 2 | 2 CaSO_4 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term (NH_4)_2SO_4 | 1 | -1 | -(Δ[(NH4)2SO4])/(Δt) Ca(NO_2)_2 | 1 | -1 | -(Δ[Ca(NO2)2])/(Δt) H_2O | 4 | 4 | 1/4 (Δ[H2O])/(Δt) N_2 | 2 | 2 | 1/2 (Δ[N2])/(Δt) CaSO_4 | 1 | 1 | (Δ[CaSO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -(Δ[(NH4)2SO4])/(Δt) = -(Δ[Ca(NO2)2])/(Δt) = 1/4 (Δ[H2O])/(Δt) = 1/2 (Δ[N2])/(Δt) = (Δ[CaSO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: (NH_4)_2SO_4 + Ca(NO_2)_2 ⟶ H_2O + N_2 + CaSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: (NH_4)_2SO_4 + Ca(NO_2)_2 ⟶ 4 H_2O + 2 N_2 + CaSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i (NH_4)_2SO_4 | 1 | -1 Ca(NO_2)_2 | 1 | -1 H_2O | 4 | 4 N_2 | 2 | 2 CaSO_4 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term (NH_4)_2SO_4 | 1 | -1 | -(Δ[(NH4)2SO4])/(Δt) Ca(NO_2)_2 | 1 | -1 | -(Δ[Ca(NO2)2])/(Δt) H_2O | 4 | 4 | 1/4 (Δ[H2O])/(Δt) N_2 | 2 | 2 | 1/2 (Δ[N2])/(Δt) CaSO_4 | 1 | 1 | (Δ[CaSO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[(NH4)2SO4])/(Δt) = -(Δ[Ca(NO2)2])/(Δt) = 1/4 (Δ[H2O])/(Δt) = 1/2 (Δ[N2])/(Δt) = (Δ[CaSO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | ammonium sulfate | calcium nitrite | water | nitrogen | calcium sulfate formula | (NH_4)_2SO_4 | Ca(NO_2)_2 | H_2O | N_2 | CaSO_4 Hill formula | H_8N_2O_4S | CaN_2O_4 | H_2O | N_2 | CaO_4S name | ammonium sulfate | calcium nitrite | water | nitrogen | calcium sulfate IUPAC name | | calcium dinitrite | water | molecular nitrogen | calcium sulfate
| ammonium sulfate | calcium nitrite | water | nitrogen | calcium sulfate formula | (NH_4)_2SO_4 | Ca(NO_2)_2 | H_2O | N_2 | CaSO_4 Hill formula | H_8N_2O_4S | CaN_2O_4 | H_2O | N_2 | CaO_4S name | ammonium sulfate | calcium nitrite | water | nitrogen | calcium sulfate IUPAC name | | calcium dinitrite | water | molecular nitrogen | calcium sulfate

Substance properties

 | ammonium sulfate | calcium nitrite | water | nitrogen | calcium sulfate molar mass | 132.1 g/mol | 132.09 g/mol | 18.015 g/mol | 28.014 g/mol | 136.13 g/mol phase | solid (at STP) | solid (at STP) | liquid (at STP) | gas (at STP) |  melting point | 280 °C | 390 °C | 0 °C | -210 °C |  boiling point | | | 99.9839 °C | -195.79 °C |  density | 1.77 g/cm^3 | 2.265 g/cm^3 | 1 g/cm^3 | 0.001251 g/cm^3 (at 0 °C) |  solubility in water | | very soluble | | insoluble | slightly soluble surface tension | | | 0.0728 N/m | 0.0066 N/m |  dynamic viscosity | | | 8.9×10^-4 Pa s (at 25 °C) | 1.78×10^-5 Pa s (at 25 °C) |  odor | odorless | | odorless | odorless | odorless
| ammonium sulfate | calcium nitrite | water | nitrogen | calcium sulfate molar mass | 132.1 g/mol | 132.09 g/mol | 18.015 g/mol | 28.014 g/mol | 136.13 g/mol phase | solid (at STP) | solid (at STP) | liquid (at STP) | gas (at STP) | melting point | 280 °C | 390 °C | 0 °C | -210 °C | boiling point | | | 99.9839 °C | -195.79 °C | density | 1.77 g/cm^3 | 2.265 g/cm^3 | 1 g/cm^3 | 0.001251 g/cm^3 (at 0 °C) | solubility in water | | very soluble | | insoluble | slightly soluble surface tension | | | 0.0728 N/m | 0.0066 N/m | dynamic viscosity | | | 8.9×10^-4 Pa s (at 25 °C) | 1.78×10^-5 Pa s (at 25 °C) | odor | odorless | | odorless | odorless | odorless

Units