Search

H2O + Fe2(SO4)3 + Na2SO3 = H2SO4 + Na2SO4 + FeSO4

Input interpretation

H_2O water + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate + Na_2SO_3 sodium sulfite ⟶ H_2SO_4 sulfuric acid + Na_2SO_4 sodium sulfate + FeSO_4 duretter
H_2O water + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate + Na_2SO_3 sodium sulfite ⟶ H_2SO_4 sulfuric acid + Na_2SO_4 sodium sulfate + FeSO_4 duretter

Balanced equation

Balance the chemical equation algebraically: H_2O + Fe_2(SO_4)_3·xH_2O + Na_2SO_3 ⟶ H_2SO_4 + Na_2SO_4 + FeSO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 Fe_2(SO_4)_3·xH_2O + c_3 Na_2SO_3 ⟶ c_4 H_2SO_4 + c_5 Na_2SO_4 + c_6 FeSO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, Fe, S and Na: H: | 2 c_1 = 2 c_4 O: | c_1 + 12 c_2 + 3 c_3 = 4 c_4 + 4 c_5 + 4 c_6 Fe: | 2 c_2 = c_6 S: | 3 c_2 + c_3 = c_4 + c_5 + c_6 Na: | 2 c_3 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 1 c_4 = 1 c_5 = 1 c_6 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | H_2O + Fe_2(SO_4)_3·xH_2O + Na_2SO_3 ⟶ H_2SO_4 + Na_2SO_4 + 2 FeSO_4
Balance the chemical equation algebraically: H_2O + Fe_2(SO_4)_3·xH_2O + Na_2SO_3 ⟶ H_2SO_4 + Na_2SO_4 + FeSO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 Fe_2(SO_4)_3·xH_2O + c_3 Na_2SO_3 ⟶ c_4 H_2SO_4 + c_5 Na_2SO_4 + c_6 FeSO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, Fe, S and Na: H: | 2 c_1 = 2 c_4 O: | c_1 + 12 c_2 + 3 c_3 = 4 c_4 + 4 c_5 + 4 c_6 Fe: | 2 c_2 = c_6 S: | 3 c_2 + c_3 = c_4 + c_5 + c_6 Na: | 2 c_3 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 1 c_4 = 1 c_5 = 1 c_6 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | H_2O + Fe_2(SO_4)_3·xH_2O + Na_2SO_3 ⟶ H_2SO_4 + Na_2SO_4 + 2 FeSO_4

Structures

 + + ⟶ + +
+ + ⟶ + +

Names

water + iron(III) sulfate hydrate + sodium sulfite ⟶ sulfuric acid + sodium sulfate + duretter
water + iron(III) sulfate hydrate + sodium sulfite ⟶ sulfuric acid + sodium sulfate + duretter

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2O + Fe_2(SO_4)_3·xH_2O + Na_2SO_3 ⟶ H_2SO_4 + Na_2SO_4 + FeSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: H_2O + Fe_2(SO_4)_3·xH_2O + Na_2SO_3 ⟶ H_2SO_4 + Na_2SO_4 + 2 FeSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 1 | -1 Fe_2(SO_4)_3·xH_2O | 1 | -1 Na_2SO_3 | 1 | -1 H_2SO_4 | 1 | 1 Na_2SO_4 | 1 | 1 FeSO_4 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 1 | -1 | ([H2O])^(-1) Fe_2(SO_4)_3·xH_2O | 1 | -1 | ([Fe2(SO4)3·xH2O])^(-1) Na_2SO_3 | 1 | -1 | ([Na2SO3])^(-1) H_2SO_4 | 1 | 1 | [H2SO4] Na_2SO_4 | 1 | 1 | [Na2SO4] FeSO_4 | 2 | 2 | ([FeSO4])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2O])^(-1) ([Fe2(SO4)3·xH2O])^(-1) ([Na2SO3])^(-1) [H2SO4] [Na2SO4] ([FeSO4])^2 = ([H2SO4] [Na2SO4] ([FeSO4])^2)/([H2O] [Fe2(SO4)3·xH2O] [Na2SO3])
Construct the equilibrium constant, K, expression for: H_2O + Fe_2(SO_4)_3·xH_2O + Na_2SO_3 ⟶ H_2SO_4 + Na_2SO_4 + FeSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: H_2O + Fe_2(SO_4)_3·xH_2O + Na_2SO_3 ⟶ H_2SO_4 + Na_2SO_4 + 2 FeSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 1 | -1 Fe_2(SO_4)_3·xH_2O | 1 | -1 Na_2SO_3 | 1 | -1 H_2SO_4 | 1 | 1 Na_2SO_4 | 1 | 1 FeSO_4 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 1 | -1 | ([H2O])^(-1) Fe_2(SO_4)_3·xH_2O | 1 | -1 | ([Fe2(SO4)3·xH2O])^(-1) Na_2SO_3 | 1 | -1 | ([Na2SO3])^(-1) H_2SO_4 | 1 | 1 | [H2SO4] Na_2SO_4 | 1 | 1 | [Na2SO4] FeSO_4 | 2 | 2 | ([FeSO4])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2O])^(-1) ([Fe2(SO4)3·xH2O])^(-1) ([Na2SO3])^(-1) [H2SO4] [Na2SO4] ([FeSO4])^2 = ([H2SO4] [Na2SO4] ([FeSO4])^2)/([H2O] [Fe2(SO4)3·xH2O] [Na2SO3])

Rate of reaction

Construct the rate of reaction expression for: H_2O + Fe_2(SO_4)_3·xH_2O + Na_2SO_3 ⟶ H_2SO_4 + Na_2SO_4 + FeSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: H_2O + Fe_2(SO_4)_3·xH_2O + Na_2SO_3 ⟶ H_2SO_4 + Na_2SO_4 + 2 FeSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 1 | -1 Fe_2(SO_4)_3·xH_2O | 1 | -1 Na_2SO_3 | 1 | -1 H_2SO_4 | 1 | 1 Na_2SO_4 | 1 | 1 FeSO_4 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 1 | -1 | -(Δ[H2O])/(Δt) Fe_2(SO_4)_3·xH_2O | 1 | -1 | -(Δ[Fe2(SO4)3·xH2O])/(Δt) Na_2SO_3 | 1 | -1 | -(Δ[Na2SO3])/(Δt) H_2SO_4 | 1 | 1 | (Δ[H2SO4])/(Δt) Na_2SO_4 | 1 | 1 | (Δ[Na2SO4])/(Δt) FeSO_4 | 2 | 2 | 1/2 (Δ[FeSO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -(Δ[H2O])/(Δt) = -(Δ[Fe2(SO4)3·xH2O])/(Δt) = -(Δ[Na2SO3])/(Δt) = (Δ[H2SO4])/(Δt) = (Δ[Na2SO4])/(Δt) = 1/2 (Δ[FeSO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2O + Fe_2(SO_4)_3·xH_2O + Na_2SO_3 ⟶ H_2SO_4 + Na_2SO_4 + FeSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: H_2O + Fe_2(SO_4)_3·xH_2O + Na_2SO_3 ⟶ H_2SO_4 + Na_2SO_4 + 2 FeSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 1 | -1 Fe_2(SO_4)_3·xH_2O | 1 | -1 Na_2SO_3 | 1 | -1 H_2SO_4 | 1 | 1 Na_2SO_4 | 1 | 1 FeSO_4 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 1 | -1 | -(Δ[H2O])/(Δt) Fe_2(SO_4)_3·xH_2O | 1 | -1 | -(Δ[Fe2(SO4)3·xH2O])/(Δt) Na_2SO_3 | 1 | -1 | -(Δ[Na2SO3])/(Δt) H_2SO_4 | 1 | 1 | (Δ[H2SO4])/(Δt) Na_2SO_4 | 1 | 1 | (Δ[Na2SO4])/(Δt) FeSO_4 | 2 | 2 | 1/2 (Δ[FeSO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[H2O])/(Δt) = -(Δ[Fe2(SO4)3·xH2O])/(Δt) = -(Δ[Na2SO3])/(Δt) = (Δ[H2SO4])/(Δt) = (Δ[Na2SO4])/(Δt) = 1/2 (Δ[FeSO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | water | iron(III) sulfate hydrate | sodium sulfite | sulfuric acid | sodium sulfate | duretter formula | H_2O | Fe_2(SO_4)_3·xH_2O | Na_2SO_3 | H_2SO_4 | Na_2SO_4 | FeSO_4 Hill formula | H_2O | Fe_2O_12S_3 | Na_2O_3S | H_2O_4S | Na_2O_4S | FeO_4S name | water | iron(III) sulfate hydrate | sodium sulfite | sulfuric acid | sodium sulfate | duretter IUPAC name | water | diferric trisulfate | disodium sulfite | sulfuric acid | disodium sulfate | iron(+2) cation sulfate
| water | iron(III) sulfate hydrate | sodium sulfite | sulfuric acid | sodium sulfate | duretter formula | H_2O | Fe_2(SO_4)_3·xH_2O | Na_2SO_3 | H_2SO_4 | Na_2SO_4 | FeSO_4 Hill formula | H_2O | Fe_2O_12S_3 | Na_2O_3S | H_2O_4S | Na_2O_4S | FeO_4S name | water | iron(III) sulfate hydrate | sodium sulfite | sulfuric acid | sodium sulfate | duretter IUPAC name | water | diferric trisulfate | disodium sulfite | sulfuric acid | disodium sulfate | iron(+2) cation sulfate

Substance properties

 | water | iron(III) sulfate hydrate | sodium sulfite | sulfuric acid | sodium sulfate | duretter molar mass | 18.015 g/mol | 399.9 g/mol | 126.04 g/mol | 98.07 g/mol | 142.04 g/mol | 151.9 g/mol phase | liquid (at STP) | | solid (at STP) | liquid (at STP) | solid (at STP) |  melting point | 0 °C | | 500 °C | 10.371 °C | 884 °C |  boiling point | 99.9839 °C | | | 279.6 °C | 1429 °C |  density | 1 g/cm^3 | | 2.63 g/cm^3 | 1.8305 g/cm^3 | 2.68 g/cm^3 | 2.841 g/cm^3 solubility in water | | slightly soluble | | very soluble | soluble |  surface tension | 0.0728 N/m | | | 0.0735 N/m | |  dynamic viscosity | 8.9×10^-4 Pa s (at 25 °C) | | | 0.021 Pa s (at 25 °C) | |  odor | odorless | | | odorless | |
| water | iron(III) sulfate hydrate | sodium sulfite | sulfuric acid | sodium sulfate | duretter molar mass | 18.015 g/mol | 399.9 g/mol | 126.04 g/mol | 98.07 g/mol | 142.04 g/mol | 151.9 g/mol phase | liquid (at STP) | | solid (at STP) | liquid (at STP) | solid (at STP) | melting point | 0 °C | | 500 °C | 10.371 °C | 884 °C | boiling point | 99.9839 °C | | | 279.6 °C | 1429 °C | density | 1 g/cm^3 | | 2.63 g/cm^3 | 1.8305 g/cm^3 | 2.68 g/cm^3 | 2.841 g/cm^3 solubility in water | | slightly soluble | | very soluble | soluble | surface tension | 0.0728 N/m | | | 0.0735 N/m | | dynamic viscosity | 8.9×10^-4 Pa s (at 25 °C) | | | 0.021 Pa s (at 25 °C) | | odor | odorless | | | odorless | |

Units