Search

H2SO4 + KMnO4 + LiCl = H2O + Cl2 + K2SO4 + MnSO4 + Li2SO4

Input interpretation

H_2SO_4 sulfuric acid + KMnO_4 potassium permanganate + LiCl lithium chloride ⟶ H_2O water + Cl_2 chlorine + K_2SO_4 potassium sulfate + MnSO_4 manganese(II) sulfate + Li_2SO_4 lithium sulfate
H_2SO_4 sulfuric acid + KMnO_4 potassium permanganate + LiCl lithium chloride ⟶ H_2O water + Cl_2 chlorine + K_2SO_4 potassium sulfate + MnSO_4 manganese(II) sulfate + Li_2SO_4 lithium sulfate

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + KMnO_4 + LiCl ⟶ H_2O + Cl_2 + K_2SO_4 + MnSO_4 + Li_2SO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 KMnO_4 + c_3 LiCl ⟶ c_4 H_2O + c_5 Cl_2 + c_6 K_2SO_4 + c_7 MnSO_4 + c_8 Li_2SO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K, Mn, Cl and Li: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 4 c_2 = c_4 + 4 c_6 + 4 c_7 + 4 c_8 S: | c_1 = c_6 + c_7 + c_8 K: | c_2 = 2 c_6 Mn: | c_2 = c_7 Cl: | c_3 = 2 c_5 Li: | c_3 = 2 c_8 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_6 = 1 and solve the system of equations for the remaining coefficients: c_1 = 8 c_2 = 2 c_3 = 10 c_4 = 8 c_5 = 5 c_6 = 1 c_7 = 2 c_8 = 5 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 8 H_2SO_4 + 2 KMnO_4 + 10 LiCl ⟶ 8 H_2O + 5 Cl_2 + K_2SO_4 + 2 MnSO_4 + 5 Li_2SO_4
Balance the chemical equation algebraically: H_2SO_4 + KMnO_4 + LiCl ⟶ H_2O + Cl_2 + K_2SO_4 + MnSO_4 + Li_2SO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 KMnO_4 + c_3 LiCl ⟶ c_4 H_2O + c_5 Cl_2 + c_6 K_2SO_4 + c_7 MnSO_4 + c_8 Li_2SO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K, Mn, Cl and Li: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 4 c_2 = c_4 + 4 c_6 + 4 c_7 + 4 c_8 S: | c_1 = c_6 + c_7 + c_8 K: | c_2 = 2 c_6 Mn: | c_2 = c_7 Cl: | c_3 = 2 c_5 Li: | c_3 = 2 c_8 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_6 = 1 and solve the system of equations for the remaining coefficients: c_1 = 8 c_2 = 2 c_3 = 10 c_4 = 8 c_5 = 5 c_6 = 1 c_7 = 2 c_8 = 5 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 8 H_2SO_4 + 2 KMnO_4 + 10 LiCl ⟶ 8 H_2O + 5 Cl_2 + K_2SO_4 + 2 MnSO_4 + 5 Li_2SO_4

Structures

 + + ⟶ + + + +
+ + ⟶ + + + +

Names

sulfuric acid + potassium permanganate + lithium chloride ⟶ water + chlorine + potassium sulfate + manganese(II) sulfate + lithium sulfate
sulfuric acid + potassium permanganate + lithium chloride ⟶ water + chlorine + potassium sulfate + manganese(II) sulfate + lithium sulfate

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + KMnO_4 + LiCl ⟶ H_2O + Cl_2 + K_2SO_4 + MnSO_4 + Li_2SO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 8 H_2SO_4 + 2 KMnO_4 + 10 LiCl ⟶ 8 H_2O + 5 Cl_2 + K_2SO_4 + 2 MnSO_4 + 5 Li_2SO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 8 | -8 KMnO_4 | 2 | -2 LiCl | 10 | -10 H_2O | 8 | 8 Cl_2 | 5 | 5 K_2SO_4 | 1 | 1 MnSO_4 | 2 | 2 Li_2SO_4 | 5 | 5 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 8 | -8 | ([H2SO4])^(-8) KMnO_4 | 2 | -2 | ([KMnO4])^(-2) LiCl | 10 | -10 | ([LiCl])^(-10) H_2O | 8 | 8 | ([H2O])^8 Cl_2 | 5 | 5 | ([Cl2])^5 K_2SO_4 | 1 | 1 | [K2SO4] MnSO_4 | 2 | 2 | ([MnSO4])^2 Li_2SO_4 | 5 | 5 | ([Li2SO4])^5 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-8) ([KMnO4])^(-2) ([LiCl])^(-10) ([H2O])^8 ([Cl2])^5 [K2SO4] ([MnSO4])^2 ([Li2SO4])^5 = (([H2O])^8 ([Cl2])^5 [K2SO4] ([MnSO4])^2 ([Li2SO4])^5)/(([H2SO4])^8 ([KMnO4])^2 ([LiCl])^10)
Construct the equilibrium constant, K, expression for: H_2SO_4 + KMnO_4 + LiCl ⟶ H_2O + Cl_2 + K_2SO_4 + MnSO_4 + Li_2SO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 8 H_2SO_4 + 2 KMnO_4 + 10 LiCl ⟶ 8 H_2O + 5 Cl_2 + K_2SO_4 + 2 MnSO_4 + 5 Li_2SO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 8 | -8 KMnO_4 | 2 | -2 LiCl | 10 | -10 H_2O | 8 | 8 Cl_2 | 5 | 5 K_2SO_4 | 1 | 1 MnSO_4 | 2 | 2 Li_2SO_4 | 5 | 5 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 8 | -8 | ([H2SO4])^(-8) KMnO_4 | 2 | -2 | ([KMnO4])^(-2) LiCl | 10 | -10 | ([LiCl])^(-10) H_2O | 8 | 8 | ([H2O])^8 Cl_2 | 5 | 5 | ([Cl2])^5 K_2SO_4 | 1 | 1 | [K2SO4] MnSO_4 | 2 | 2 | ([MnSO4])^2 Li_2SO_4 | 5 | 5 | ([Li2SO4])^5 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-8) ([KMnO4])^(-2) ([LiCl])^(-10) ([H2O])^8 ([Cl2])^5 [K2SO4] ([MnSO4])^2 ([Li2SO4])^5 = (([H2O])^8 ([Cl2])^5 [K2SO4] ([MnSO4])^2 ([Li2SO4])^5)/(([H2SO4])^8 ([KMnO4])^2 ([LiCl])^10)

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + KMnO_4 + LiCl ⟶ H_2O + Cl_2 + K_2SO_4 + MnSO_4 + Li_2SO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 8 H_2SO_4 + 2 KMnO_4 + 10 LiCl ⟶ 8 H_2O + 5 Cl_2 + K_2SO_4 + 2 MnSO_4 + 5 Li_2SO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 8 | -8 KMnO_4 | 2 | -2 LiCl | 10 | -10 H_2O | 8 | 8 Cl_2 | 5 | 5 K_2SO_4 | 1 | 1 MnSO_4 | 2 | 2 Li_2SO_4 | 5 | 5 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 8 | -8 | -1/8 (Δ[H2SO4])/(Δt) KMnO_4 | 2 | -2 | -1/2 (Δ[KMnO4])/(Δt) LiCl | 10 | -10 | -1/10 (Δ[LiCl])/(Δt) H_2O | 8 | 8 | 1/8 (Δ[H2O])/(Δt) Cl_2 | 5 | 5 | 1/5 (Δ[Cl2])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) MnSO_4 | 2 | 2 | 1/2 (Δ[MnSO4])/(Δt) Li_2SO_4 | 5 | 5 | 1/5 (Δ[Li2SO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/8 (Δ[H2SO4])/(Δt) = -1/2 (Δ[KMnO4])/(Δt) = -1/10 (Δ[LiCl])/(Δt) = 1/8 (Δ[H2O])/(Δt) = 1/5 (Δ[Cl2])/(Δt) = (Δ[K2SO4])/(Δt) = 1/2 (Δ[MnSO4])/(Δt) = 1/5 (Δ[Li2SO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + KMnO_4 + LiCl ⟶ H_2O + Cl_2 + K_2SO_4 + MnSO_4 + Li_2SO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 8 H_2SO_4 + 2 KMnO_4 + 10 LiCl ⟶ 8 H_2O + 5 Cl_2 + K_2SO_4 + 2 MnSO_4 + 5 Li_2SO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 8 | -8 KMnO_4 | 2 | -2 LiCl | 10 | -10 H_2O | 8 | 8 Cl_2 | 5 | 5 K_2SO_4 | 1 | 1 MnSO_4 | 2 | 2 Li_2SO_4 | 5 | 5 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 8 | -8 | -1/8 (Δ[H2SO4])/(Δt) KMnO_4 | 2 | -2 | -1/2 (Δ[KMnO4])/(Δt) LiCl | 10 | -10 | -1/10 (Δ[LiCl])/(Δt) H_2O | 8 | 8 | 1/8 (Δ[H2O])/(Δt) Cl_2 | 5 | 5 | 1/5 (Δ[Cl2])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) MnSO_4 | 2 | 2 | 1/2 (Δ[MnSO4])/(Δt) Li_2SO_4 | 5 | 5 | 1/5 (Δ[Li2SO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/8 (Δ[H2SO4])/(Δt) = -1/2 (Δ[KMnO4])/(Δt) = -1/10 (Δ[LiCl])/(Δt) = 1/8 (Δ[H2O])/(Δt) = 1/5 (Δ[Cl2])/(Δt) = (Δ[K2SO4])/(Δt) = 1/2 (Δ[MnSO4])/(Δt) = 1/5 (Δ[Li2SO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | potassium permanganate | lithium chloride | water | chlorine | potassium sulfate | manganese(II) sulfate | lithium sulfate formula | H_2SO_4 | KMnO_4 | LiCl | H_2O | Cl_2 | K_2SO_4 | MnSO_4 | Li_2SO_4 Hill formula | H_2O_4S | KMnO_4 | ClLi | H_2O | Cl_2 | K_2O_4S | MnSO_4 | Li_2O_4S name | sulfuric acid | potassium permanganate | lithium chloride | water | chlorine | potassium sulfate | manganese(II) sulfate | lithium sulfate IUPAC name | sulfuric acid | potassium permanganate | lithium chloride | water | molecular chlorine | dipotassium sulfate | manganese(+2) cation sulfate | dilithium sulfate
| sulfuric acid | potassium permanganate | lithium chloride | water | chlorine | potassium sulfate | manganese(II) sulfate | lithium sulfate formula | H_2SO_4 | KMnO_4 | LiCl | H_2O | Cl_2 | K_2SO_4 | MnSO_4 | Li_2SO_4 Hill formula | H_2O_4S | KMnO_4 | ClLi | H_2O | Cl_2 | K_2O_4S | MnSO_4 | Li_2O_4S name | sulfuric acid | potassium permanganate | lithium chloride | water | chlorine | potassium sulfate | manganese(II) sulfate | lithium sulfate IUPAC name | sulfuric acid | potassium permanganate | lithium chloride | water | molecular chlorine | dipotassium sulfate | manganese(+2) cation sulfate | dilithium sulfate