Search

CuSO4 + Na3PO4 = Na2SO4 + Cu3(PO4)2

Input interpretation

CuSO_4 copper(II) sulfate + Na_3PO_4 trisodium phosphate ⟶ Na_2SO_4 sodium sulfate + Cu_3(PO_4)_2 copper(II) phosphate
CuSO_4 copper(II) sulfate + Na_3PO_4 trisodium phosphate ⟶ Na_2SO_4 sodium sulfate + Cu_3(PO_4)_2 copper(II) phosphate

Balanced equation

Balance the chemical equation algebraically: CuSO_4 + Na_3PO_4 ⟶ Na_2SO_4 + Cu_3(PO_4)_2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 CuSO_4 + c_2 Na_3PO_4 ⟶ c_3 Na_2SO_4 + c_4 Cu_3(PO_4)_2 Set the number of atoms in the reactants equal to the number of atoms in the products for Cu, O, S, Na and P: Cu: | c_1 = 3 c_4 O: | 4 c_1 + 4 c_2 = 4 c_3 + 8 c_4 S: | c_1 = c_3 Na: | 3 c_2 = 2 c_3 P: | c_2 = 2 c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_4 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 2 c_3 = 3 c_4 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 3 CuSO_4 + 2 Na_3PO_4 ⟶ 3 Na_2SO_4 + Cu_3(PO_4)_2
Balance the chemical equation algebraically: CuSO_4 + Na_3PO_4 ⟶ Na_2SO_4 + Cu_3(PO_4)_2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 CuSO_4 + c_2 Na_3PO_4 ⟶ c_3 Na_2SO_4 + c_4 Cu_3(PO_4)_2 Set the number of atoms in the reactants equal to the number of atoms in the products for Cu, O, S, Na and P: Cu: | c_1 = 3 c_4 O: | 4 c_1 + 4 c_2 = 4 c_3 + 8 c_4 S: | c_1 = c_3 Na: | 3 c_2 = 2 c_3 P: | c_2 = 2 c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_4 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 2 c_3 = 3 c_4 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 3 CuSO_4 + 2 Na_3PO_4 ⟶ 3 Na_2SO_4 + Cu_3(PO_4)_2

Structures

 + ⟶ +
+ ⟶ +

Names

copper(II) sulfate + trisodium phosphate ⟶ sodium sulfate + copper(II) phosphate
copper(II) sulfate + trisodium phosphate ⟶ sodium sulfate + copper(II) phosphate

Equilibrium constant

Construct the equilibrium constant, K, expression for: CuSO_4 + Na_3PO_4 ⟶ Na_2SO_4 + Cu_3(PO_4)_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 CuSO_4 + 2 Na_3PO_4 ⟶ 3 Na_2SO_4 + Cu_3(PO_4)_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i CuSO_4 | 3 | -3 Na_3PO_4 | 2 | -2 Na_2SO_4 | 3 | 3 Cu_3(PO_4)_2 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression CuSO_4 | 3 | -3 | ([CuSO4])^(-3) Na_3PO_4 | 2 | -2 | ([Na3PO4])^(-2) Na_2SO_4 | 3 | 3 | ([Na2SO4])^3 Cu_3(PO_4)_2 | 1 | 1 | [Cu3(PO4)2] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([CuSO4])^(-3) ([Na3PO4])^(-2) ([Na2SO4])^3 [Cu3(PO4)2] = (([Na2SO4])^3 [Cu3(PO4)2])/(([CuSO4])^3 ([Na3PO4])^2)
Construct the equilibrium constant, K, expression for: CuSO_4 + Na_3PO_4 ⟶ Na_2SO_4 + Cu_3(PO_4)_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 CuSO_4 + 2 Na_3PO_4 ⟶ 3 Na_2SO_4 + Cu_3(PO_4)_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i CuSO_4 | 3 | -3 Na_3PO_4 | 2 | -2 Na_2SO_4 | 3 | 3 Cu_3(PO_4)_2 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression CuSO_4 | 3 | -3 | ([CuSO4])^(-3) Na_3PO_4 | 2 | -2 | ([Na3PO4])^(-2) Na_2SO_4 | 3 | 3 | ([Na2SO4])^3 Cu_3(PO_4)_2 | 1 | 1 | [Cu3(PO4)2] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([CuSO4])^(-3) ([Na3PO4])^(-2) ([Na2SO4])^3 [Cu3(PO4)2] = (([Na2SO4])^3 [Cu3(PO4)2])/(([CuSO4])^3 ([Na3PO4])^2)

Rate of reaction

Construct the rate of reaction expression for: CuSO_4 + Na_3PO_4 ⟶ Na_2SO_4 + Cu_3(PO_4)_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 CuSO_4 + 2 Na_3PO_4 ⟶ 3 Na_2SO_4 + Cu_3(PO_4)_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i CuSO_4 | 3 | -3 Na_3PO_4 | 2 | -2 Na_2SO_4 | 3 | 3 Cu_3(PO_4)_2 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term CuSO_4 | 3 | -3 | -1/3 (Δ[CuSO4])/(Δt) Na_3PO_4 | 2 | -2 | -1/2 (Δ[Na3PO4])/(Δt) Na_2SO_4 | 3 | 3 | 1/3 (Δ[Na2SO4])/(Δt) Cu_3(PO_4)_2 | 1 | 1 | (Δ[Cu3(PO4)2])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/3 (Δ[CuSO4])/(Δt) = -1/2 (Δ[Na3PO4])/(Δt) = 1/3 (Δ[Na2SO4])/(Δt) = (Δ[Cu3(PO4)2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: CuSO_4 + Na_3PO_4 ⟶ Na_2SO_4 + Cu_3(PO_4)_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 CuSO_4 + 2 Na_3PO_4 ⟶ 3 Na_2SO_4 + Cu_3(PO_4)_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i CuSO_4 | 3 | -3 Na_3PO_4 | 2 | -2 Na_2SO_4 | 3 | 3 Cu_3(PO_4)_2 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term CuSO_4 | 3 | -3 | -1/3 (Δ[CuSO4])/(Δt) Na_3PO_4 | 2 | -2 | -1/2 (Δ[Na3PO4])/(Δt) Na_2SO_4 | 3 | 3 | 1/3 (Δ[Na2SO4])/(Δt) Cu_3(PO_4)_2 | 1 | 1 | (Δ[Cu3(PO4)2])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/3 (Δ[CuSO4])/(Δt) = -1/2 (Δ[Na3PO4])/(Δt) = 1/3 (Δ[Na2SO4])/(Δt) = (Δ[Cu3(PO4)2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | copper(II) sulfate | trisodium phosphate | sodium sulfate | copper(II) phosphate formula | CuSO_4 | Na_3PO_4 | Na_2SO_4 | Cu_3(PO_4)_2 Hill formula | CuO_4S | Na_3O_4P | Na_2O_4S | Cu_3O_8P_2 name | copper(II) sulfate | trisodium phosphate | sodium sulfate | copper(II) phosphate IUPAC name | copper sulfate | trisodium phosphate | disodium sulfate | tricopper diphosphate
| copper(II) sulfate | trisodium phosphate | sodium sulfate | copper(II) phosphate formula | CuSO_4 | Na_3PO_4 | Na_2SO_4 | Cu_3(PO_4)_2 Hill formula | CuO_4S | Na_3O_4P | Na_2O_4S | Cu_3O_8P_2 name | copper(II) sulfate | trisodium phosphate | sodium sulfate | copper(II) phosphate IUPAC name | copper sulfate | trisodium phosphate | disodium sulfate | tricopper diphosphate

Substance properties

 | copper(II) sulfate | trisodium phosphate | sodium sulfate | copper(II) phosphate molar mass | 159.6 g/mol | 163.94 g/mol | 142.04 g/mol | 380.58 g/mol phase | solid (at STP) | solid (at STP) | solid (at STP) |  melting point | 200 °C | 75 °C | 884 °C |  boiling point | | | 1429 °C |  density | 3.603 g/cm^3 | 2.536 g/cm^3 | 2.68 g/cm^3 |  solubility in water | | soluble | soluble | insoluble odor | | odorless | |
| copper(II) sulfate | trisodium phosphate | sodium sulfate | copper(II) phosphate molar mass | 159.6 g/mol | 163.94 g/mol | 142.04 g/mol | 380.58 g/mol phase | solid (at STP) | solid (at STP) | solid (at STP) | melting point | 200 °C | 75 °C | 884 °C | boiling point | | | 1429 °C | density | 3.603 g/cm^3 | 2.536 g/cm^3 | 2.68 g/cm^3 | solubility in water | | soluble | soluble | insoluble odor | | odorless | |

Units