Search

H2SO4 + FeSO4 + KBrO3 = H2O + Fe2(SO4)3 + KBr

Input interpretation

H_2SO_4 sulfuric acid + FeSO_4 duretter + KBrO_3 potassium bromate ⟶ H_2O water + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate + KBr potassium bromide
H_2SO_4 sulfuric acid + FeSO_4 duretter + KBrO_3 potassium bromate ⟶ H_2O water + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate + KBr potassium bromide

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + FeSO_4 + KBrO_3 ⟶ H_2O + Fe_2(SO_4)_3·xH_2O + KBr Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 FeSO_4 + c_3 KBrO_3 ⟶ c_4 H_2O + c_5 Fe_2(SO_4)_3·xH_2O + c_6 KBr Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Fe, Br and K: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 4 c_2 + 3 c_3 = c_4 + 12 c_5 S: | c_1 + c_2 = 3 c_5 Fe: | c_2 = 2 c_5 Br: | c_3 = c_6 K: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 6 c_3 = 1 c_4 = 3 c_5 = 3 c_6 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 3 H_2SO_4 + 6 FeSO_4 + KBrO_3 ⟶ 3 H_2O + 3 Fe_2(SO_4)_3·xH_2O + KBr
Balance the chemical equation algebraically: H_2SO_4 + FeSO_4 + KBrO_3 ⟶ H_2O + Fe_2(SO_4)_3·xH_2O + KBr Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 FeSO_4 + c_3 KBrO_3 ⟶ c_4 H_2O + c_5 Fe_2(SO_4)_3·xH_2O + c_6 KBr Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Fe, Br and K: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 4 c_2 + 3 c_3 = c_4 + 12 c_5 S: | c_1 + c_2 = 3 c_5 Fe: | c_2 = 2 c_5 Br: | c_3 = c_6 K: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 6 c_3 = 1 c_4 = 3 c_5 = 3 c_6 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 3 H_2SO_4 + 6 FeSO_4 + KBrO_3 ⟶ 3 H_2O + 3 Fe_2(SO_4)_3·xH_2O + KBr

Structures

 + + ⟶ + +
+ + ⟶ + +

Names

sulfuric acid + duretter + potassium bromate ⟶ water + iron(III) sulfate hydrate + potassium bromide
sulfuric acid + duretter + potassium bromate ⟶ water + iron(III) sulfate hydrate + potassium bromide

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + FeSO_4 + KBrO_3 ⟶ H_2O + Fe_2(SO_4)_3·xH_2O + KBr Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 H_2SO_4 + 6 FeSO_4 + KBrO_3 ⟶ 3 H_2O + 3 Fe_2(SO_4)_3·xH_2O + KBr Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 3 | -3 FeSO_4 | 6 | -6 KBrO_3 | 1 | -1 H_2O | 3 | 3 Fe_2(SO_4)_3·xH_2O | 3 | 3 KBr | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 3 | -3 | ([H2SO4])^(-3) FeSO_4 | 6 | -6 | ([FeSO4])^(-6) KBrO_3 | 1 | -1 | ([KBrO3])^(-1) H_2O | 3 | 3 | ([H2O])^3 Fe_2(SO_4)_3·xH_2O | 3 | 3 | ([Fe2(SO4)3·xH2O])^3 KBr | 1 | 1 | [KBr] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-3) ([FeSO4])^(-6) ([KBrO3])^(-1) ([H2O])^3 ([Fe2(SO4)3·xH2O])^3 [KBr] = (([H2O])^3 ([Fe2(SO4)3·xH2O])^3 [KBr])/(([H2SO4])^3 ([FeSO4])^6 [KBrO3])
Construct the equilibrium constant, K, expression for: H_2SO_4 + FeSO_4 + KBrO_3 ⟶ H_2O + Fe_2(SO_4)_3·xH_2O + KBr Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 H_2SO_4 + 6 FeSO_4 + KBrO_3 ⟶ 3 H_2O + 3 Fe_2(SO_4)_3·xH_2O + KBr Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 3 | -3 FeSO_4 | 6 | -6 KBrO_3 | 1 | -1 H_2O | 3 | 3 Fe_2(SO_4)_3·xH_2O | 3 | 3 KBr | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 3 | -3 | ([H2SO4])^(-3) FeSO_4 | 6 | -6 | ([FeSO4])^(-6) KBrO_3 | 1 | -1 | ([KBrO3])^(-1) H_2O | 3 | 3 | ([H2O])^3 Fe_2(SO_4)_3·xH_2O | 3 | 3 | ([Fe2(SO4)3·xH2O])^3 KBr | 1 | 1 | [KBr] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-3) ([FeSO4])^(-6) ([KBrO3])^(-1) ([H2O])^3 ([Fe2(SO4)3·xH2O])^3 [KBr] = (([H2O])^3 ([Fe2(SO4)3·xH2O])^3 [KBr])/(([H2SO4])^3 ([FeSO4])^6 [KBrO3])

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + FeSO_4 + KBrO_3 ⟶ H_2O + Fe_2(SO_4)_3·xH_2O + KBr Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 H_2SO_4 + 6 FeSO_4 + KBrO_3 ⟶ 3 H_2O + 3 Fe_2(SO_4)_3·xH_2O + KBr Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 3 | -3 FeSO_4 | 6 | -6 KBrO_3 | 1 | -1 H_2O | 3 | 3 Fe_2(SO_4)_3·xH_2O | 3 | 3 KBr | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 3 | -3 | -1/3 (Δ[H2SO4])/(Δt) FeSO_4 | 6 | -6 | -1/6 (Δ[FeSO4])/(Δt) KBrO_3 | 1 | -1 | -(Δ[KBrO3])/(Δt) H_2O | 3 | 3 | 1/3 (Δ[H2O])/(Δt) Fe_2(SO_4)_3·xH_2O | 3 | 3 | 1/3 (Δ[Fe2(SO4)3·xH2O])/(Δt) KBr | 1 | 1 | (Δ[KBr])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/3 (Δ[H2SO4])/(Δt) = -1/6 (Δ[FeSO4])/(Δt) = -(Δ[KBrO3])/(Δt) = 1/3 (Δ[H2O])/(Δt) = 1/3 (Δ[Fe2(SO4)3·xH2O])/(Δt) = (Δ[KBr])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + FeSO_4 + KBrO_3 ⟶ H_2O + Fe_2(SO_4)_3·xH_2O + KBr Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 H_2SO_4 + 6 FeSO_4 + KBrO_3 ⟶ 3 H_2O + 3 Fe_2(SO_4)_3·xH_2O + KBr Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 3 | -3 FeSO_4 | 6 | -6 KBrO_3 | 1 | -1 H_2O | 3 | 3 Fe_2(SO_4)_3·xH_2O | 3 | 3 KBr | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 3 | -3 | -1/3 (Δ[H2SO4])/(Δt) FeSO_4 | 6 | -6 | -1/6 (Δ[FeSO4])/(Δt) KBrO_3 | 1 | -1 | -(Δ[KBrO3])/(Δt) H_2O | 3 | 3 | 1/3 (Δ[H2O])/(Δt) Fe_2(SO_4)_3·xH_2O | 3 | 3 | 1/3 (Δ[Fe2(SO4)3·xH2O])/(Δt) KBr | 1 | 1 | (Δ[KBr])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/3 (Δ[H2SO4])/(Δt) = -1/6 (Δ[FeSO4])/(Δt) = -(Δ[KBrO3])/(Δt) = 1/3 (Δ[H2O])/(Δt) = 1/3 (Δ[Fe2(SO4)3·xH2O])/(Δt) = (Δ[KBr])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | duretter | potassium bromate | water | iron(III) sulfate hydrate | potassium bromide formula | H_2SO_4 | FeSO_4 | KBrO_3 | H_2O | Fe_2(SO_4)_3·xH_2O | KBr Hill formula | H_2O_4S | FeO_4S | BrKO_3 | H_2O | Fe_2O_12S_3 | BrK name | sulfuric acid | duretter | potassium bromate | water | iron(III) sulfate hydrate | potassium bromide IUPAC name | sulfuric acid | iron(+2) cation sulfate | potassium bromate | water | diferric trisulfate | potassium bromide
| sulfuric acid | duretter | potassium bromate | water | iron(III) sulfate hydrate | potassium bromide formula | H_2SO_4 | FeSO_4 | KBrO_3 | H_2O | Fe_2(SO_4)_3·xH_2O | KBr Hill formula | H_2O_4S | FeO_4S | BrKO_3 | H_2O | Fe_2O_12S_3 | BrK name | sulfuric acid | duretter | potassium bromate | water | iron(III) sulfate hydrate | potassium bromide IUPAC name | sulfuric acid | iron(+2) cation sulfate | potassium bromate | water | diferric trisulfate | potassium bromide

Substance properties

 | sulfuric acid | duretter | potassium bromate | water | iron(III) sulfate hydrate | potassium bromide molar mass | 98.07 g/mol | 151.9 g/mol | 167 g/mol | 18.015 g/mol | 399.9 g/mol | 119 g/mol phase | liquid (at STP) | | solid (at STP) | liquid (at STP) | | solid (at STP) melting point | 10.371 °C | | 350 °C | 0 °C | | 734 °C boiling point | 279.6 °C | | | 99.9839 °C | | 1435 °C density | 1.8305 g/cm^3 | 2.841 g/cm^3 | 3.218 g/cm^3 | 1 g/cm^3 | | 2.75 g/cm^3 solubility in water | very soluble | | | | slightly soluble | soluble surface tension | 0.0735 N/m | | | 0.0728 N/m | |  dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | |  odor | odorless | | | odorless | |
| sulfuric acid | duretter | potassium bromate | water | iron(III) sulfate hydrate | potassium bromide molar mass | 98.07 g/mol | 151.9 g/mol | 167 g/mol | 18.015 g/mol | 399.9 g/mol | 119 g/mol phase | liquid (at STP) | | solid (at STP) | liquid (at STP) | | solid (at STP) melting point | 10.371 °C | | 350 °C | 0 °C | | 734 °C boiling point | 279.6 °C | | | 99.9839 °C | | 1435 °C density | 1.8305 g/cm^3 | 2.841 g/cm^3 | 3.218 g/cm^3 | 1 g/cm^3 | | 2.75 g/cm^3 solubility in water | very soluble | | | | slightly soluble | soluble surface tension | 0.0735 N/m | | | 0.0728 N/m | | dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | odor | odorless | | | odorless | |

Units