Search

H2O2 + NH4OH + As2S5 = H2O + (NH4)2SO4 + (NH4)3AsO4

Input interpretation

H_2O_2 hydrogen peroxide + NH_4OH ammonium hydroxide + As_2S_5 arsenic(V) sulfide ⟶ H_2O water + (NH_4)_2SO_4 ammonium sulfate + (NH4)3AsO4
H_2O_2 hydrogen peroxide + NH_4OH ammonium hydroxide + As_2S_5 arsenic(V) sulfide ⟶ H_2O water + (NH_4)_2SO_4 ammonium sulfate + (NH4)3AsO4

Balanced equation

Balance the chemical equation algebraically: H_2O_2 + NH_4OH + As_2S_5 ⟶ H_2O + (NH_4)_2SO_4 + (NH4)3AsO4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O_2 + c_2 NH_4OH + c_3 As_2S_5 ⟶ c_4 H_2O + c_5 (NH_4)_2SO_4 + c_6 (NH4)3AsO4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, N, As and S: H: | 2 c_1 + 5 c_2 = 2 c_4 + 8 c_5 + 12 c_6 O: | 2 c_1 + c_2 = c_4 + 4 c_5 + 4 c_6 N: | c_2 = 2 c_5 + 3 c_6 As: | 2 c_3 = c_6 S: | 5 c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 20 c_2 = 16 c_3 = 1 c_4 = 28 c_5 = 5 c_6 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 20 H_2O_2 + 16 NH_4OH + As_2S_5 ⟶ 28 H_2O + 5 (NH_4)_2SO_4 + 2 (NH4)3AsO4
Balance the chemical equation algebraically: H_2O_2 + NH_4OH + As_2S_5 ⟶ H_2O + (NH_4)_2SO_4 + (NH4)3AsO4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O_2 + c_2 NH_4OH + c_3 As_2S_5 ⟶ c_4 H_2O + c_5 (NH_4)_2SO_4 + c_6 (NH4)3AsO4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, N, As and S: H: | 2 c_1 + 5 c_2 = 2 c_4 + 8 c_5 + 12 c_6 O: | 2 c_1 + c_2 = c_4 + 4 c_5 + 4 c_6 N: | c_2 = 2 c_5 + 3 c_6 As: | 2 c_3 = c_6 S: | 5 c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 20 c_2 = 16 c_3 = 1 c_4 = 28 c_5 = 5 c_6 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 20 H_2O_2 + 16 NH_4OH + As_2S_5 ⟶ 28 H_2O + 5 (NH_4)_2SO_4 + 2 (NH4)3AsO4

Structures

 + + ⟶ + + (NH4)3AsO4
+ + ⟶ + + (NH4)3AsO4

Names

hydrogen peroxide + ammonium hydroxide + arsenic(V) sulfide ⟶ water + ammonium sulfate + (NH4)3AsO4
hydrogen peroxide + ammonium hydroxide + arsenic(V) sulfide ⟶ water + ammonium sulfate + (NH4)3AsO4

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2O_2 + NH_4OH + As_2S_5 ⟶ H_2O + (NH_4)_2SO_4 + (NH4)3AsO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 20 H_2O_2 + 16 NH_4OH + As_2S_5 ⟶ 28 H_2O + 5 (NH_4)_2SO_4 + 2 (NH4)3AsO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O_2 | 20 | -20 NH_4OH | 16 | -16 As_2S_5 | 1 | -1 H_2O | 28 | 28 (NH_4)_2SO_4 | 5 | 5 (NH4)3AsO4 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O_2 | 20 | -20 | ([H2O2])^(-20) NH_4OH | 16 | -16 | ([NH4OH])^(-16) As_2S_5 | 1 | -1 | ([As2S5])^(-1) H_2O | 28 | 28 | ([H2O])^28 (NH_4)_2SO_4 | 5 | 5 | ([(NH4)2SO4])^5 (NH4)3AsO4 | 2 | 2 | ([(NH4)3AsO4])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2O2])^(-20) ([NH4OH])^(-16) ([As2S5])^(-1) ([H2O])^28 ([(NH4)2SO4])^5 ([(NH4)3AsO4])^2 = (([H2O])^28 ([(NH4)2SO4])^5 ([(NH4)3AsO4])^2)/(([H2O2])^20 ([NH4OH])^16 [As2S5])
Construct the equilibrium constant, K, expression for: H_2O_2 + NH_4OH + As_2S_5 ⟶ H_2O + (NH_4)_2SO_4 + (NH4)3AsO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 20 H_2O_2 + 16 NH_4OH + As_2S_5 ⟶ 28 H_2O + 5 (NH_4)_2SO_4 + 2 (NH4)3AsO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O_2 | 20 | -20 NH_4OH | 16 | -16 As_2S_5 | 1 | -1 H_2O | 28 | 28 (NH_4)_2SO_4 | 5 | 5 (NH4)3AsO4 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O_2 | 20 | -20 | ([H2O2])^(-20) NH_4OH | 16 | -16 | ([NH4OH])^(-16) As_2S_5 | 1 | -1 | ([As2S5])^(-1) H_2O | 28 | 28 | ([H2O])^28 (NH_4)_2SO_4 | 5 | 5 | ([(NH4)2SO4])^5 (NH4)3AsO4 | 2 | 2 | ([(NH4)3AsO4])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2O2])^(-20) ([NH4OH])^(-16) ([As2S5])^(-1) ([H2O])^28 ([(NH4)2SO4])^5 ([(NH4)3AsO4])^2 = (([H2O])^28 ([(NH4)2SO4])^5 ([(NH4)3AsO4])^2)/(([H2O2])^20 ([NH4OH])^16 [As2S5])

Rate of reaction

Construct the rate of reaction expression for: H_2O_2 + NH_4OH + As_2S_5 ⟶ H_2O + (NH_4)_2SO_4 + (NH4)3AsO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 20 H_2O_2 + 16 NH_4OH + As_2S_5 ⟶ 28 H_2O + 5 (NH_4)_2SO_4 + 2 (NH4)3AsO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O_2 | 20 | -20 NH_4OH | 16 | -16 As_2S_5 | 1 | -1 H_2O | 28 | 28 (NH_4)_2SO_4 | 5 | 5 (NH4)3AsO4 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O_2 | 20 | -20 | -1/20 (Δ[H2O2])/(Δt) NH_4OH | 16 | -16 | -1/16 (Δ[NH4OH])/(Δt) As_2S_5 | 1 | -1 | -(Δ[As2S5])/(Δt) H_2O | 28 | 28 | 1/28 (Δ[H2O])/(Δt) (NH_4)_2SO_4 | 5 | 5 | 1/5 (Δ[(NH4)2SO4])/(Δt) (NH4)3AsO4 | 2 | 2 | 1/2 (Δ[(NH4)3AsO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/20 (Δ[H2O2])/(Δt) = -1/16 (Δ[NH4OH])/(Δt) = -(Δ[As2S5])/(Δt) = 1/28 (Δ[H2O])/(Δt) = 1/5 (Δ[(NH4)2SO4])/(Δt) = 1/2 (Δ[(NH4)3AsO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2O_2 + NH_4OH + As_2S_5 ⟶ H_2O + (NH_4)_2SO_4 + (NH4)3AsO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 20 H_2O_2 + 16 NH_4OH + As_2S_5 ⟶ 28 H_2O + 5 (NH_4)_2SO_4 + 2 (NH4)3AsO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O_2 | 20 | -20 NH_4OH | 16 | -16 As_2S_5 | 1 | -1 H_2O | 28 | 28 (NH_4)_2SO_4 | 5 | 5 (NH4)3AsO4 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O_2 | 20 | -20 | -1/20 (Δ[H2O2])/(Δt) NH_4OH | 16 | -16 | -1/16 (Δ[NH4OH])/(Δt) As_2S_5 | 1 | -1 | -(Δ[As2S5])/(Δt) H_2O | 28 | 28 | 1/28 (Δ[H2O])/(Δt) (NH_4)_2SO_4 | 5 | 5 | 1/5 (Δ[(NH4)2SO4])/(Δt) (NH4)3AsO4 | 2 | 2 | 1/2 (Δ[(NH4)3AsO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/20 (Δ[H2O2])/(Δt) = -1/16 (Δ[NH4OH])/(Δt) = -(Δ[As2S5])/(Δt) = 1/28 (Δ[H2O])/(Δt) = 1/5 (Δ[(NH4)2SO4])/(Δt) = 1/2 (Δ[(NH4)3AsO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | hydrogen peroxide | ammonium hydroxide | arsenic(V) sulfide | water | ammonium sulfate | (NH4)3AsO4 formula | H_2O_2 | NH_4OH | As_2S_5 | H_2O | (NH_4)_2SO_4 | (NH4)3AsO4 Hill formula | H_2O_2 | H_5NO | As_2S_5 | H_2O | H_8N_2O_4S | H12AsN3O4 name | hydrogen peroxide | ammonium hydroxide | arsenic(V) sulfide | water | ammonium sulfate |
| hydrogen peroxide | ammonium hydroxide | arsenic(V) sulfide | water | ammonium sulfate | (NH4)3AsO4 formula | H_2O_2 | NH_4OH | As_2S_5 | H_2O | (NH_4)_2SO_4 | (NH4)3AsO4 Hill formula | H_2O_2 | H_5NO | As_2S_5 | H_2O | H_8N_2O_4S | H12AsN3O4 name | hydrogen peroxide | ammonium hydroxide | arsenic(V) sulfide | water | ammonium sulfate |

Substance properties

 | hydrogen peroxide | ammonium hydroxide | arsenic(V) sulfide | water | ammonium sulfate | (NH4)3AsO4 molar mass | 34.014 g/mol | 35.046 g/mol | 310.1 g/mol | 18.015 g/mol | 132.1 g/mol | 193.03 g/mol phase | liquid (at STP) | aqueous (at STP) | solid (at STP) | liquid (at STP) | solid (at STP) |  melting point | -0.43 °C | -57.5 °C | 300 °C | 0 °C | 280 °C |  boiling point | 150.2 °C | 36 °C | | 99.9839 °C | |  density | 1.44 g/cm^3 | 0.9 g/cm^3 | | 1 g/cm^3 | 1.77 g/cm^3 |  solubility in water | miscible | very soluble | | | |  surface tension | 0.0804 N/m | | | 0.0728 N/m | |  dynamic viscosity | 0.001249 Pa s (at 20 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | |  odor | | | | odorless | odorless |
| hydrogen peroxide | ammonium hydroxide | arsenic(V) sulfide | water | ammonium sulfate | (NH4)3AsO4 molar mass | 34.014 g/mol | 35.046 g/mol | 310.1 g/mol | 18.015 g/mol | 132.1 g/mol | 193.03 g/mol phase | liquid (at STP) | aqueous (at STP) | solid (at STP) | liquid (at STP) | solid (at STP) | melting point | -0.43 °C | -57.5 °C | 300 °C | 0 °C | 280 °C | boiling point | 150.2 °C | 36 °C | | 99.9839 °C | | density | 1.44 g/cm^3 | 0.9 g/cm^3 | | 1 g/cm^3 | 1.77 g/cm^3 | solubility in water | miscible | very soluble | | | | surface tension | 0.0804 N/m | | | 0.0728 N/m | | dynamic viscosity | 0.001249 Pa s (at 20 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | odor | | | | odorless | odorless |

Units