Search

Na2SO4 + KI + KIO3 = K2SO4 + I2 + Na2O

Input interpretation

Na_2SO_4 sodium sulfate + KI potassium iodide + KIO_3 potassium iodate ⟶ K_2SO_4 potassium sulfate + I_2 iodine + Na_2O sodium oxide
Na_2SO_4 sodium sulfate + KI potassium iodide + KIO_3 potassium iodate ⟶ K_2SO_4 potassium sulfate + I_2 iodine + Na_2O sodium oxide

Balanced equation

Balance the chemical equation algebraically: Na_2SO_4 + KI + KIO_3 ⟶ K_2SO_4 + I_2 + Na_2O Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Na_2SO_4 + c_2 KI + c_3 KIO_3 ⟶ c_4 K_2SO_4 + c_5 I_2 + c_6 Na_2O Set the number of atoms in the reactants equal to the number of atoms in the products for Na, O, S, I and K: Na: | 2 c_1 = 2 c_6 O: | 4 c_1 + 3 c_3 = 4 c_4 + c_6 S: | c_1 = c_4 I: | c_2 + c_3 = 2 c_5 K: | c_2 + c_3 = 2 c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 5 c_3 = 1 c_4 = 3 c_5 = 3 c_6 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 3 Na_2SO_4 + 5 KI + KIO_3 ⟶ 3 K_2SO_4 + 3 I_2 + 3 Na_2O
Balance the chemical equation algebraically: Na_2SO_4 + KI + KIO_3 ⟶ K_2SO_4 + I_2 + Na_2O Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Na_2SO_4 + c_2 KI + c_3 KIO_3 ⟶ c_4 K_2SO_4 + c_5 I_2 + c_6 Na_2O Set the number of atoms in the reactants equal to the number of atoms in the products for Na, O, S, I and K: Na: | 2 c_1 = 2 c_6 O: | 4 c_1 + 3 c_3 = 4 c_4 + c_6 S: | c_1 = c_4 I: | c_2 + c_3 = 2 c_5 K: | c_2 + c_3 = 2 c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 5 c_3 = 1 c_4 = 3 c_5 = 3 c_6 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 3 Na_2SO_4 + 5 KI + KIO_3 ⟶ 3 K_2SO_4 + 3 I_2 + 3 Na_2O

Structures

 + + ⟶ + +
+ + ⟶ + +

Names

sodium sulfate + potassium iodide + potassium iodate ⟶ potassium sulfate + iodine + sodium oxide
sodium sulfate + potassium iodide + potassium iodate ⟶ potassium sulfate + iodine + sodium oxide

Equilibrium constant

Construct the equilibrium constant, K, expression for: Na_2SO_4 + KI + KIO_3 ⟶ K_2SO_4 + I_2 + Na_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 Na_2SO_4 + 5 KI + KIO_3 ⟶ 3 K_2SO_4 + 3 I_2 + 3 Na_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Na_2SO_4 | 3 | -3 KI | 5 | -5 KIO_3 | 1 | -1 K_2SO_4 | 3 | 3 I_2 | 3 | 3 Na_2O | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Na_2SO_4 | 3 | -3 | ([Na2SO4])^(-3) KI | 5 | -5 | ([KI])^(-5) KIO_3 | 1 | -1 | ([KIO3])^(-1) K_2SO_4 | 3 | 3 | ([K2SO4])^3 I_2 | 3 | 3 | ([I2])^3 Na_2O | 3 | 3 | ([Na2O])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([Na2SO4])^(-3) ([KI])^(-5) ([KIO3])^(-1) ([K2SO4])^3 ([I2])^3 ([Na2O])^3 = (([K2SO4])^3 ([I2])^3 ([Na2O])^3)/(([Na2SO4])^3 ([KI])^5 [KIO3])
Construct the equilibrium constant, K, expression for: Na_2SO_4 + KI + KIO_3 ⟶ K_2SO_4 + I_2 + Na_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 Na_2SO_4 + 5 KI + KIO_3 ⟶ 3 K_2SO_4 + 3 I_2 + 3 Na_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Na_2SO_4 | 3 | -3 KI | 5 | -5 KIO_3 | 1 | -1 K_2SO_4 | 3 | 3 I_2 | 3 | 3 Na_2O | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Na_2SO_4 | 3 | -3 | ([Na2SO4])^(-3) KI | 5 | -5 | ([KI])^(-5) KIO_3 | 1 | -1 | ([KIO3])^(-1) K_2SO_4 | 3 | 3 | ([K2SO4])^3 I_2 | 3 | 3 | ([I2])^3 Na_2O | 3 | 3 | ([Na2O])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([Na2SO4])^(-3) ([KI])^(-5) ([KIO3])^(-1) ([K2SO4])^3 ([I2])^3 ([Na2O])^3 = (([K2SO4])^3 ([I2])^3 ([Na2O])^3)/(([Na2SO4])^3 ([KI])^5 [KIO3])

Rate of reaction

Construct the rate of reaction expression for: Na_2SO_4 + KI + KIO_3 ⟶ K_2SO_4 + I_2 + Na_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 Na_2SO_4 + 5 KI + KIO_3 ⟶ 3 K_2SO_4 + 3 I_2 + 3 Na_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Na_2SO_4 | 3 | -3 KI | 5 | -5 KIO_3 | 1 | -1 K_2SO_4 | 3 | 3 I_2 | 3 | 3 Na_2O | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Na_2SO_4 | 3 | -3 | -1/3 (Δ[Na2SO4])/(Δt) KI | 5 | -5 | -1/5 (Δ[KI])/(Δt) KIO_3 | 1 | -1 | -(Δ[KIO3])/(Δt) K_2SO_4 | 3 | 3 | 1/3 (Δ[K2SO4])/(Δt) I_2 | 3 | 3 | 1/3 (Δ[I2])/(Δt) Na_2O | 3 | 3 | 1/3 (Δ[Na2O])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/3 (Δ[Na2SO4])/(Δt) = -1/5 (Δ[KI])/(Δt) = -(Δ[KIO3])/(Δt) = 1/3 (Δ[K2SO4])/(Δt) = 1/3 (Δ[I2])/(Δt) = 1/3 (Δ[Na2O])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: Na_2SO_4 + KI + KIO_3 ⟶ K_2SO_4 + I_2 + Na_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 Na_2SO_4 + 5 KI + KIO_3 ⟶ 3 K_2SO_4 + 3 I_2 + 3 Na_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Na_2SO_4 | 3 | -3 KI | 5 | -5 KIO_3 | 1 | -1 K_2SO_4 | 3 | 3 I_2 | 3 | 3 Na_2O | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Na_2SO_4 | 3 | -3 | -1/3 (Δ[Na2SO4])/(Δt) KI | 5 | -5 | -1/5 (Δ[KI])/(Δt) KIO_3 | 1 | -1 | -(Δ[KIO3])/(Δt) K_2SO_4 | 3 | 3 | 1/3 (Δ[K2SO4])/(Δt) I_2 | 3 | 3 | 1/3 (Δ[I2])/(Δt) Na_2O | 3 | 3 | 1/3 (Δ[Na2O])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/3 (Δ[Na2SO4])/(Δt) = -1/5 (Δ[KI])/(Δt) = -(Δ[KIO3])/(Δt) = 1/3 (Δ[K2SO4])/(Δt) = 1/3 (Δ[I2])/(Δt) = 1/3 (Δ[Na2O])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sodium sulfate | potassium iodide | potassium iodate | potassium sulfate | iodine | sodium oxide formula | Na_2SO_4 | KI | KIO_3 | K_2SO_4 | I_2 | Na_2O Hill formula | Na_2O_4S | IK | IKO_3 | K_2O_4S | I_2 | Na_2O name | sodium sulfate | potassium iodide | potassium iodate | potassium sulfate | iodine | sodium oxide IUPAC name | disodium sulfate | potassium iodide | potassium iodate | dipotassium sulfate | molecular iodine | disodium oxygen(-2) anion
| sodium sulfate | potassium iodide | potassium iodate | potassium sulfate | iodine | sodium oxide formula | Na_2SO_4 | KI | KIO_3 | K_2SO_4 | I_2 | Na_2O Hill formula | Na_2O_4S | IK | IKO_3 | K_2O_4S | I_2 | Na_2O name | sodium sulfate | potassium iodide | potassium iodate | potassium sulfate | iodine | sodium oxide IUPAC name | disodium sulfate | potassium iodide | potassium iodate | dipotassium sulfate | molecular iodine | disodium oxygen(-2) anion

Substance properties

 | sodium sulfate | potassium iodide | potassium iodate | potassium sulfate | iodine | sodium oxide molar mass | 142.04 g/mol | 166.0028 g/mol | 214 g/mol | 174.25 g/mol | 253.80894 g/mol | 61.979 g/mol phase | solid (at STP) | solid (at STP) | solid (at STP) | | solid (at STP) |  melting point | 884 °C | 681 °C | 560 °C | | 113 °C |  boiling point | 1429 °C | 1330 °C | | | 184 °C |  density | 2.68 g/cm^3 | 3.123 g/cm^3 | 1.005 g/cm^3 | | 4.94 g/cm^3 | 2.27 g/cm^3 solubility in water | soluble | | | soluble | |  dynamic viscosity | | 0.0010227 Pa s (at 732.9 °C) | | | 0.00227 Pa s (at 116 °C) |
| sodium sulfate | potassium iodide | potassium iodate | potassium sulfate | iodine | sodium oxide molar mass | 142.04 g/mol | 166.0028 g/mol | 214 g/mol | 174.25 g/mol | 253.80894 g/mol | 61.979 g/mol phase | solid (at STP) | solid (at STP) | solid (at STP) | | solid (at STP) | melting point | 884 °C | 681 °C | 560 °C | | 113 °C | boiling point | 1429 °C | 1330 °C | | | 184 °C | density | 2.68 g/cm^3 | 3.123 g/cm^3 | 1.005 g/cm^3 | | 4.94 g/cm^3 | 2.27 g/cm^3 solubility in water | soluble | | | soluble | | dynamic viscosity | | 0.0010227 Pa s (at 732.9 °C) | | | 0.00227 Pa s (at 116 °C) |

Units