Search

H2O + MnSO4 + KIO4 = H2SO4 + K2SO4 + I2 + HMnO4

Input interpretation

H_2O water + MnSO_4 manganese(II) sulfate + KIO_4 potassium periodate ⟶ H_2SO_4 sulfuric acid + K_2SO_4 potassium sulfate + I_2 iodine + HMnO4
H_2O water + MnSO_4 manganese(II) sulfate + KIO_4 potassium periodate ⟶ H_2SO_4 sulfuric acid + K_2SO_4 potassium sulfate + I_2 iodine + HMnO4

Balanced equation

Balance the chemical equation algebraically: H_2O + MnSO_4 + KIO_4 ⟶ H_2SO_4 + K_2SO_4 + I_2 + HMnO4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 MnSO_4 + c_3 KIO_4 ⟶ c_4 H_2SO_4 + c_5 K_2SO_4 + c_6 I_2 + c_7 HMnO4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, Mn, S, I and K: H: | 2 c_1 = 2 c_4 + c_7 O: | c_1 + 4 c_2 + 4 c_3 = 4 c_4 + 4 c_5 + 4 c_7 Mn: | c_2 = c_7 S: | c_2 = c_4 + c_5 I: | c_3 = 2 c_6 K: | c_3 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_5 = 1 and solve the system of equations for the remaining coefficients: c_1 = 16/5 c_2 = 14/5 c_3 = 2 c_4 = 9/5 c_5 = 1 c_6 = 1 c_7 = 14/5 Multiply by the least common denominator, 5, to eliminate fractional coefficients: c_1 = 16 c_2 = 14 c_3 = 10 c_4 = 9 c_5 = 5 c_6 = 5 c_7 = 14 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 16 H_2O + 14 MnSO_4 + 10 KIO_4 ⟶ 9 H_2SO_4 + 5 K_2SO_4 + 5 I_2 + 14 HMnO4
Balance the chemical equation algebraically: H_2O + MnSO_4 + KIO_4 ⟶ H_2SO_4 + K_2SO_4 + I_2 + HMnO4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 MnSO_4 + c_3 KIO_4 ⟶ c_4 H_2SO_4 + c_5 K_2SO_4 + c_6 I_2 + c_7 HMnO4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, Mn, S, I and K: H: | 2 c_1 = 2 c_4 + c_7 O: | c_1 + 4 c_2 + 4 c_3 = 4 c_4 + 4 c_5 + 4 c_7 Mn: | c_2 = c_7 S: | c_2 = c_4 + c_5 I: | c_3 = 2 c_6 K: | c_3 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_5 = 1 and solve the system of equations for the remaining coefficients: c_1 = 16/5 c_2 = 14/5 c_3 = 2 c_4 = 9/5 c_5 = 1 c_6 = 1 c_7 = 14/5 Multiply by the least common denominator, 5, to eliminate fractional coefficients: c_1 = 16 c_2 = 14 c_3 = 10 c_4 = 9 c_5 = 5 c_6 = 5 c_7 = 14 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 16 H_2O + 14 MnSO_4 + 10 KIO_4 ⟶ 9 H_2SO_4 + 5 K_2SO_4 + 5 I_2 + 14 HMnO4

Structures

 + + ⟶ + + + HMnO4
+ + ⟶ + + + HMnO4

Names

water + manganese(II) sulfate + potassium periodate ⟶ sulfuric acid + potassium sulfate + iodine + HMnO4
water + manganese(II) sulfate + potassium periodate ⟶ sulfuric acid + potassium sulfate + iodine + HMnO4

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2O + MnSO_4 + KIO_4 ⟶ H_2SO_4 + K_2SO_4 + I_2 + HMnO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 16 H_2O + 14 MnSO_4 + 10 KIO_4 ⟶ 9 H_2SO_4 + 5 K_2SO_4 + 5 I_2 + 14 HMnO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 16 | -16 MnSO_4 | 14 | -14 KIO_4 | 10 | -10 H_2SO_4 | 9 | 9 K_2SO_4 | 5 | 5 I_2 | 5 | 5 HMnO4 | 14 | 14 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 16 | -16 | ([H2O])^(-16) MnSO_4 | 14 | -14 | ([MnSO4])^(-14) KIO_4 | 10 | -10 | ([KIO4])^(-10) H_2SO_4 | 9 | 9 | ([H2SO4])^9 K_2SO_4 | 5 | 5 | ([K2SO4])^5 I_2 | 5 | 5 | ([I2])^5 HMnO4 | 14 | 14 | ([HMnO4])^14 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2O])^(-16) ([MnSO4])^(-14) ([KIO4])^(-10) ([H2SO4])^9 ([K2SO4])^5 ([I2])^5 ([HMnO4])^14 = (([H2SO4])^9 ([K2SO4])^5 ([I2])^5 ([HMnO4])^14)/(([H2O])^16 ([MnSO4])^14 ([KIO4])^10)
Construct the equilibrium constant, K, expression for: H_2O + MnSO_4 + KIO_4 ⟶ H_2SO_4 + K_2SO_4 + I_2 + HMnO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 16 H_2O + 14 MnSO_4 + 10 KIO_4 ⟶ 9 H_2SO_4 + 5 K_2SO_4 + 5 I_2 + 14 HMnO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 16 | -16 MnSO_4 | 14 | -14 KIO_4 | 10 | -10 H_2SO_4 | 9 | 9 K_2SO_4 | 5 | 5 I_2 | 5 | 5 HMnO4 | 14 | 14 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 16 | -16 | ([H2O])^(-16) MnSO_4 | 14 | -14 | ([MnSO4])^(-14) KIO_4 | 10 | -10 | ([KIO4])^(-10) H_2SO_4 | 9 | 9 | ([H2SO4])^9 K_2SO_4 | 5 | 5 | ([K2SO4])^5 I_2 | 5 | 5 | ([I2])^5 HMnO4 | 14 | 14 | ([HMnO4])^14 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2O])^(-16) ([MnSO4])^(-14) ([KIO4])^(-10) ([H2SO4])^9 ([K2SO4])^5 ([I2])^5 ([HMnO4])^14 = (([H2SO4])^9 ([K2SO4])^5 ([I2])^5 ([HMnO4])^14)/(([H2O])^16 ([MnSO4])^14 ([KIO4])^10)

Rate of reaction

Construct the rate of reaction expression for: H_2O + MnSO_4 + KIO_4 ⟶ H_2SO_4 + K_2SO_4 + I_2 + HMnO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 16 H_2O + 14 MnSO_4 + 10 KIO_4 ⟶ 9 H_2SO_4 + 5 K_2SO_4 + 5 I_2 + 14 HMnO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 16 | -16 MnSO_4 | 14 | -14 KIO_4 | 10 | -10 H_2SO_4 | 9 | 9 K_2SO_4 | 5 | 5 I_2 | 5 | 5 HMnO4 | 14 | 14 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 16 | -16 | -1/16 (Δ[H2O])/(Δt) MnSO_4 | 14 | -14 | -1/14 (Δ[MnSO4])/(Δt) KIO_4 | 10 | -10 | -1/10 (Δ[KIO4])/(Δt) H_2SO_4 | 9 | 9 | 1/9 (Δ[H2SO4])/(Δt) K_2SO_4 | 5 | 5 | 1/5 (Δ[K2SO4])/(Δt) I_2 | 5 | 5 | 1/5 (Δ[I2])/(Δt) HMnO4 | 14 | 14 | 1/14 (Δ[HMnO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/16 (Δ[H2O])/(Δt) = -1/14 (Δ[MnSO4])/(Δt) = -1/10 (Δ[KIO4])/(Δt) = 1/9 (Δ[H2SO4])/(Δt) = 1/5 (Δ[K2SO4])/(Δt) = 1/5 (Δ[I2])/(Δt) = 1/14 (Δ[HMnO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2O + MnSO_4 + KIO_4 ⟶ H_2SO_4 + K_2SO_4 + I_2 + HMnO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 16 H_2O + 14 MnSO_4 + 10 KIO_4 ⟶ 9 H_2SO_4 + 5 K_2SO_4 + 5 I_2 + 14 HMnO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 16 | -16 MnSO_4 | 14 | -14 KIO_4 | 10 | -10 H_2SO_4 | 9 | 9 K_2SO_4 | 5 | 5 I_2 | 5 | 5 HMnO4 | 14 | 14 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 16 | -16 | -1/16 (Δ[H2O])/(Δt) MnSO_4 | 14 | -14 | -1/14 (Δ[MnSO4])/(Δt) KIO_4 | 10 | -10 | -1/10 (Δ[KIO4])/(Δt) H_2SO_4 | 9 | 9 | 1/9 (Δ[H2SO4])/(Δt) K_2SO_4 | 5 | 5 | 1/5 (Δ[K2SO4])/(Δt) I_2 | 5 | 5 | 1/5 (Δ[I2])/(Δt) HMnO4 | 14 | 14 | 1/14 (Δ[HMnO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/16 (Δ[H2O])/(Δt) = -1/14 (Δ[MnSO4])/(Δt) = -1/10 (Δ[KIO4])/(Δt) = 1/9 (Δ[H2SO4])/(Δt) = 1/5 (Δ[K2SO4])/(Δt) = 1/5 (Δ[I2])/(Δt) = 1/14 (Δ[HMnO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | water | manganese(II) sulfate | potassium periodate | sulfuric acid | potassium sulfate | iodine | HMnO4 formula | H_2O | MnSO_4 | KIO_4 | H_2SO_4 | K_2SO_4 | I_2 | HMnO4 Hill formula | H_2O | MnSO_4 | IKO_4 | H_2O_4S | K_2O_4S | I_2 | HMnO4 name | water | manganese(II) sulfate | potassium periodate | sulfuric acid | potassium sulfate | iodine |  IUPAC name | water | manganese(+2) cation sulfate | potassium periodate | sulfuric acid | dipotassium sulfate | molecular iodine |
| water | manganese(II) sulfate | potassium periodate | sulfuric acid | potassium sulfate | iodine | HMnO4 formula | H_2O | MnSO_4 | KIO_4 | H_2SO_4 | K_2SO_4 | I_2 | HMnO4 Hill formula | H_2O | MnSO_4 | IKO_4 | H_2O_4S | K_2O_4S | I_2 | HMnO4 name | water | manganese(II) sulfate | potassium periodate | sulfuric acid | potassium sulfate | iodine | IUPAC name | water | manganese(+2) cation sulfate | potassium periodate | sulfuric acid | dipotassium sulfate | molecular iodine |

Substance properties

 | water | manganese(II) sulfate | potassium periodate | sulfuric acid | potassium sulfate | iodine | HMnO4 molar mass | 18.015 g/mol | 150.99 g/mol | 229.999 g/mol | 98.07 g/mol | 174.25 g/mol | 253.80894 g/mol | 119.94 g/mol phase | liquid (at STP) | solid (at STP) | solid (at STP) | liquid (at STP) | | solid (at STP) |  melting point | 0 °C | 710 °C | 582 °C | 10.371 °C | | 113 °C |  boiling point | 99.9839 °C | | | 279.6 °C | | 184 °C |  density | 1 g/cm^3 | 3.25 g/cm^3 | 3.618 g/cm^3 | 1.8305 g/cm^3 | | 4.94 g/cm^3 |  solubility in water | | soluble | | very soluble | soluble | |  surface tension | 0.0728 N/m | | | 0.0735 N/m | | |  dynamic viscosity | 8.9×10^-4 Pa s (at 25 °C) | | | 0.021 Pa s (at 25 °C) | | 0.00227 Pa s (at 116 °C) |  odor | odorless | | | odorless | | |
| water | manganese(II) sulfate | potassium periodate | sulfuric acid | potassium sulfate | iodine | HMnO4 molar mass | 18.015 g/mol | 150.99 g/mol | 229.999 g/mol | 98.07 g/mol | 174.25 g/mol | 253.80894 g/mol | 119.94 g/mol phase | liquid (at STP) | solid (at STP) | solid (at STP) | liquid (at STP) | | solid (at STP) | melting point | 0 °C | 710 °C | 582 °C | 10.371 °C | | 113 °C | boiling point | 99.9839 °C | | | 279.6 °C | | 184 °C | density | 1 g/cm^3 | 3.25 g/cm^3 | 3.618 g/cm^3 | 1.8305 g/cm^3 | | 4.94 g/cm^3 | solubility in water | | soluble | | very soluble | soluble | | surface tension | 0.0728 N/m | | | 0.0735 N/m | | | dynamic viscosity | 8.9×10^-4 Pa s (at 25 °C) | | | 0.021 Pa s (at 25 °C) | | 0.00227 Pa s (at 116 °C) | odor | odorless | | | odorless | | |

Units