Search

H2SO4 + K2Cr2O7 + P2S5 = H2O + K2SO4 + SO2 + Cr2(SO4)3 + K3PO4

Input interpretation

H_2SO_4 sulfuric acid + K_2Cr_2O_7 potassium dichromate + P_2S_5 phosphorus pentasulfide ⟶ H_2O water + K_2SO_4 potassium sulfate + SO_2 sulfur dioxide + Cr_2(SO_4)_3 chromium sulfate + K3PO4
H_2SO_4 sulfuric acid + K_2Cr_2O_7 potassium dichromate + P_2S_5 phosphorus pentasulfide ⟶ H_2O water + K_2SO_4 potassium sulfate + SO_2 sulfur dioxide + Cr_2(SO_4)_3 chromium sulfate + K3PO4

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + K_2Cr_2O_7 + P_2S_5 ⟶ H_2O + K_2SO_4 + SO_2 + Cr_2(SO_4)_3 + K3PO4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 K_2Cr_2O_7 + c_3 P_2S_5 ⟶ c_4 H_2O + c_5 K_2SO_4 + c_6 SO_2 + c_7 Cr_2(SO_4)_3 + c_8 K3PO4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Cr, K and P: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 7 c_2 = c_4 + 4 c_5 + 2 c_6 + 12 c_7 + 4 c_8 S: | c_1 + 5 c_3 = c_5 + c_6 + 3 c_7 Cr: | 2 c_2 = 2 c_7 K: | 2 c_2 = 2 c_5 + 3 c_8 P: | 2 c_3 = c_8 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_2 = c_1 - 12 c_3 = 1 c_4 = c_1 c_5 = c_1 - 15 c_6 = 56 - 3 c_1 c_7 = c_1 - 12 c_8 = 2 The resulting system of equations is still underdetermined, so an additional coefficient must be set arbitrarily. Set c_1 = 16 and solve for the remaining coefficients: c_1 = 16 c_2 = 4 c_3 = 1 c_4 = 16 c_5 = 1 c_6 = 8 c_7 = 4 c_8 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 16 H_2SO_4 + 4 K_2Cr_2O_7 + P_2S_5 ⟶ 16 H_2O + K_2SO_4 + 8 SO_2 + 4 Cr_2(SO_4)_3 + 2 K3PO4
Balance the chemical equation algebraically: H_2SO_4 + K_2Cr_2O_7 + P_2S_5 ⟶ H_2O + K_2SO_4 + SO_2 + Cr_2(SO_4)_3 + K3PO4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 K_2Cr_2O_7 + c_3 P_2S_5 ⟶ c_4 H_2O + c_5 K_2SO_4 + c_6 SO_2 + c_7 Cr_2(SO_4)_3 + c_8 K3PO4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Cr, K and P: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 7 c_2 = c_4 + 4 c_5 + 2 c_6 + 12 c_7 + 4 c_8 S: | c_1 + 5 c_3 = c_5 + c_6 + 3 c_7 Cr: | 2 c_2 = 2 c_7 K: | 2 c_2 = 2 c_5 + 3 c_8 P: | 2 c_3 = c_8 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_2 = c_1 - 12 c_3 = 1 c_4 = c_1 c_5 = c_1 - 15 c_6 = 56 - 3 c_1 c_7 = c_1 - 12 c_8 = 2 The resulting system of equations is still underdetermined, so an additional coefficient must be set arbitrarily. Set c_1 = 16 and solve for the remaining coefficients: c_1 = 16 c_2 = 4 c_3 = 1 c_4 = 16 c_5 = 1 c_6 = 8 c_7 = 4 c_8 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 16 H_2SO_4 + 4 K_2Cr_2O_7 + P_2S_5 ⟶ 16 H_2O + K_2SO_4 + 8 SO_2 + 4 Cr_2(SO_4)_3 + 2 K3PO4

Structures

 + + ⟶ + + + + K3PO4
+ + ⟶ + + + + K3PO4

Names

sulfuric acid + potassium dichromate + phosphorus pentasulfide ⟶ water + potassium sulfate + sulfur dioxide + chromium sulfate + K3PO4
sulfuric acid + potassium dichromate + phosphorus pentasulfide ⟶ water + potassium sulfate + sulfur dioxide + chromium sulfate + K3PO4

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + K_2Cr_2O_7 + P_2S_5 ⟶ H_2O + K_2SO_4 + SO_2 + Cr_2(SO_4)_3 + K3PO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 16 H_2SO_4 + 4 K_2Cr_2O_7 + P_2S_5 ⟶ 16 H_2O + K_2SO_4 + 8 SO_2 + 4 Cr_2(SO_4)_3 + 2 K3PO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 16 | -16 K_2Cr_2O_7 | 4 | -4 P_2S_5 | 1 | -1 H_2O | 16 | 16 K_2SO_4 | 1 | 1 SO_2 | 8 | 8 Cr_2(SO_4)_3 | 4 | 4 K3PO4 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 16 | -16 | ([H2SO4])^(-16) K_2Cr_2O_7 | 4 | -4 | ([K2Cr2O7])^(-4) P_2S_5 | 1 | -1 | ([P2S5])^(-1) H_2O | 16 | 16 | ([H2O])^16 K_2SO_4 | 1 | 1 | [K2SO4] SO_2 | 8 | 8 | ([SO2])^8 Cr_2(SO_4)_3 | 4 | 4 | ([Cr2(SO4)3])^4 K3PO4 | 2 | 2 | ([K3PO4])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-16) ([K2Cr2O7])^(-4) ([P2S5])^(-1) ([H2O])^16 [K2SO4] ([SO2])^8 ([Cr2(SO4)3])^4 ([K3PO4])^2 = (([H2O])^16 [K2SO4] ([SO2])^8 ([Cr2(SO4)3])^4 ([K3PO4])^2)/(([H2SO4])^16 ([K2Cr2O7])^4 [P2S5])
Construct the equilibrium constant, K, expression for: H_2SO_4 + K_2Cr_2O_7 + P_2S_5 ⟶ H_2O + K_2SO_4 + SO_2 + Cr_2(SO_4)_3 + K3PO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 16 H_2SO_4 + 4 K_2Cr_2O_7 + P_2S_5 ⟶ 16 H_2O + K_2SO_4 + 8 SO_2 + 4 Cr_2(SO_4)_3 + 2 K3PO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 16 | -16 K_2Cr_2O_7 | 4 | -4 P_2S_5 | 1 | -1 H_2O | 16 | 16 K_2SO_4 | 1 | 1 SO_2 | 8 | 8 Cr_2(SO_4)_3 | 4 | 4 K3PO4 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 16 | -16 | ([H2SO4])^(-16) K_2Cr_2O_7 | 4 | -4 | ([K2Cr2O7])^(-4) P_2S_5 | 1 | -1 | ([P2S5])^(-1) H_2O | 16 | 16 | ([H2O])^16 K_2SO_4 | 1 | 1 | [K2SO4] SO_2 | 8 | 8 | ([SO2])^8 Cr_2(SO_4)_3 | 4 | 4 | ([Cr2(SO4)3])^4 K3PO4 | 2 | 2 | ([K3PO4])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-16) ([K2Cr2O7])^(-4) ([P2S5])^(-1) ([H2O])^16 [K2SO4] ([SO2])^8 ([Cr2(SO4)3])^4 ([K3PO4])^2 = (([H2O])^16 [K2SO4] ([SO2])^8 ([Cr2(SO4)3])^4 ([K3PO4])^2)/(([H2SO4])^16 ([K2Cr2O7])^4 [P2S5])

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + K_2Cr_2O_7 + P_2S_5 ⟶ H_2O + K_2SO_4 + SO_2 + Cr_2(SO_4)_3 + K3PO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 16 H_2SO_4 + 4 K_2Cr_2O_7 + P_2S_5 ⟶ 16 H_2O + K_2SO_4 + 8 SO_2 + 4 Cr_2(SO_4)_3 + 2 K3PO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 16 | -16 K_2Cr_2O_7 | 4 | -4 P_2S_5 | 1 | -1 H_2O | 16 | 16 K_2SO_4 | 1 | 1 SO_2 | 8 | 8 Cr_2(SO_4)_3 | 4 | 4 K3PO4 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 16 | -16 | -1/16 (Δ[H2SO4])/(Δt) K_2Cr_2O_7 | 4 | -4 | -1/4 (Δ[K2Cr2O7])/(Δt) P_2S_5 | 1 | -1 | -(Δ[P2S5])/(Δt) H_2O | 16 | 16 | 1/16 (Δ[H2O])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) SO_2 | 8 | 8 | 1/8 (Δ[SO2])/(Δt) Cr_2(SO_4)_3 | 4 | 4 | 1/4 (Δ[Cr2(SO4)3])/(Δt) K3PO4 | 2 | 2 | 1/2 (Δ[K3PO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/16 (Δ[H2SO4])/(Δt) = -1/4 (Δ[K2Cr2O7])/(Δt) = -(Δ[P2S5])/(Δt) = 1/16 (Δ[H2O])/(Δt) = (Δ[K2SO4])/(Δt) = 1/8 (Δ[SO2])/(Δt) = 1/4 (Δ[Cr2(SO4)3])/(Δt) = 1/2 (Δ[K3PO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + K_2Cr_2O_7 + P_2S_5 ⟶ H_2O + K_2SO_4 + SO_2 + Cr_2(SO_4)_3 + K3PO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 16 H_2SO_4 + 4 K_2Cr_2O_7 + P_2S_5 ⟶ 16 H_2O + K_2SO_4 + 8 SO_2 + 4 Cr_2(SO_4)_3 + 2 K3PO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 16 | -16 K_2Cr_2O_7 | 4 | -4 P_2S_5 | 1 | -1 H_2O | 16 | 16 K_2SO_4 | 1 | 1 SO_2 | 8 | 8 Cr_2(SO_4)_3 | 4 | 4 K3PO4 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 16 | -16 | -1/16 (Δ[H2SO4])/(Δt) K_2Cr_2O_7 | 4 | -4 | -1/4 (Δ[K2Cr2O7])/(Δt) P_2S_5 | 1 | -1 | -(Δ[P2S5])/(Δt) H_2O | 16 | 16 | 1/16 (Δ[H2O])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) SO_2 | 8 | 8 | 1/8 (Δ[SO2])/(Δt) Cr_2(SO_4)_3 | 4 | 4 | 1/4 (Δ[Cr2(SO4)3])/(Δt) K3PO4 | 2 | 2 | 1/2 (Δ[K3PO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/16 (Δ[H2SO4])/(Δt) = -1/4 (Δ[K2Cr2O7])/(Δt) = -(Δ[P2S5])/(Δt) = 1/16 (Δ[H2O])/(Δt) = (Δ[K2SO4])/(Δt) = 1/8 (Δ[SO2])/(Δt) = 1/4 (Δ[Cr2(SO4)3])/(Δt) = 1/2 (Δ[K3PO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | potassium dichromate | phosphorus pentasulfide | water | potassium sulfate | sulfur dioxide | chromium sulfate | K3PO4 formula | H_2SO_4 | K_2Cr_2O_7 | P_2S_5 | H_2O | K_2SO_4 | SO_2 | Cr_2(SO_4)_3 | K3PO4 Hill formula | H_2O_4S | Cr_2K_2O_7 | P_2S_5 | H_2O | K_2O_4S | O_2S | Cr_2O_12S_3 | K3O4P name | sulfuric acid | potassium dichromate | phosphorus pentasulfide | water | potassium sulfate | sulfur dioxide | chromium sulfate |  IUPAC name | sulfuric acid | dipotassium oxido-(oxido-dioxochromio)oxy-dioxochromium | | water | dipotassium sulfate | sulfur dioxide | chromium(+3) cation trisulfate |
| sulfuric acid | potassium dichromate | phosphorus pentasulfide | water | potassium sulfate | sulfur dioxide | chromium sulfate | K3PO4 formula | H_2SO_4 | K_2Cr_2O_7 | P_2S_5 | H_2O | K_2SO_4 | SO_2 | Cr_2(SO_4)_3 | K3PO4 Hill formula | H_2O_4S | Cr_2K_2O_7 | P_2S_5 | H_2O | K_2O_4S | O_2S | Cr_2O_12S_3 | K3O4P name | sulfuric acid | potassium dichromate | phosphorus pentasulfide | water | potassium sulfate | sulfur dioxide | chromium sulfate | IUPAC name | sulfuric acid | dipotassium oxido-(oxido-dioxochromio)oxy-dioxochromium | | water | dipotassium sulfate | sulfur dioxide | chromium(+3) cation trisulfate |