Search

Na2O2 + FeCr2O4 = Fe2O3 + Na2O + Na2CrO4

Input interpretation

Na_2O_2 sodium peroxide + FeCr_2O_4 iron(II) chromite ⟶ Fe_2O_3 iron(III) oxide + Na_2O sodium oxide + Na_2CrO_4 sodium chromate
Na_2O_2 sodium peroxide + FeCr_2O_4 iron(II) chromite ⟶ Fe_2O_3 iron(III) oxide + Na_2O sodium oxide + Na_2CrO_4 sodium chromate

Balanced equation

Balance the chemical equation algebraically: Na_2O_2 + FeCr_2O_4 ⟶ Fe_2O_3 + Na_2O + Na_2CrO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Na_2O_2 + c_2 FeCr_2O_4 ⟶ c_3 Fe_2O_3 + c_4 Na_2O + c_5 Na_2CrO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for Na, O, Cr and Fe: Na: | 2 c_1 = 2 c_4 + 2 c_5 O: | 2 c_1 + 3 c_2 = 3 c_3 + c_4 + 4 c_5 Cr: | c_2 = c_5 Fe: | c_2 = 2 c_3 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 2 c_3 = 1 c_4 = 1 c_5 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 3 Na_2O_2 + 2 FeCr_2O_4 ⟶ Fe_2O_3 + Na_2O + 2 Na_2CrO_4
Balance the chemical equation algebraically: Na_2O_2 + FeCr_2O_4 ⟶ Fe_2O_3 + Na_2O + Na_2CrO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Na_2O_2 + c_2 FeCr_2O_4 ⟶ c_3 Fe_2O_3 + c_4 Na_2O + c_5 Na_2CrO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for Na, O, Cr and Fe: Na: | 2 c_1 = 2 c_4 + 2 c_5 O: | 2 c_1 + 3 c_2 = 3 c_3 + c_4 + 4 c_5 Cr: | c_2 = c_5 Fe: | c_2 = 2 c_3 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 2 c_3 = 1 c_4 = 1 c_5 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 3 Na_2O_2 + 2 FeCr_2O_4 ⟶ Fe_2O_3 + Na_2O + 2 Na_2CrO_4

Structures

 + ⟶ + +
+ ⟶ + +

Names

sodium peroxide + iron(II) chromite ⟶ iron(III) oxide + sodium oxide + sodium chromate
sodium peroxide + iron(II) chromite ⟶ iron(III) oxide + sodium oxide + sodium chromate

Equilibrium constant

Construct the equilibrium constant, K, expression for: Na_2O_2 + FeCr_2O_4 ⟶ Fe_2O_3 + Na_2O + Na_2CrO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 Na_2O_2 + 2 FeCr_2O_4 ⟶ Fe_2O_3 + Na_2O + 2 Na_2CrO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Na_2O_2 | 3 | -3 FeCr_2O_4 | 2 | -2 Fe_2O_3 | 1 | 1 Na_2O | 1 | 1 Na_2CrO_4 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Na_2O_2 | 3 | -3 | ([Na2O2])^(-3) FeCr_2O_4 | 2 | -2 | ([FeCr2O4])^(-2) Fe_2O_3 | 1 | 1 | [Fe2O3] Na_2O | 1 | 1 | [Na2O] Na_2CrO_4 | 2 | 2 | ([Na2CrO4])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([Na2O2])^(-3) ([FeCr2O4])^(-2) [Fe2O3] [Na2O] ([Na2CrO4])^2 = ([Fe2O3] [Na2O] ([Na2CrO4])^2)/(([Na2O2])^3 ([FeCr2O4])^2)
Construct the equilibrium constant, K, expression for: Na_2O_2 + FeCr_2O_4 ⟶ Fe_2O_3 + Na_2O + Na_2CrO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 Na_2O_2 + 2 FeCr_2O_4 ⟶ Fe_2O_3 + Na_2O + 2 Na_2CrO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Na_2O_2 | 3 | -3 FeCr_2O_4 | 2 | -2 Fe_2O_3 | 1 | 1 Na_2O | 1 | 1 Na_2CrO_4 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Na_2O_2 | 3 | -3 | ([Na2O2])^(-3) FeCr_2O_4 | 2 | -2 | ([FeCr2O4])^(-2) Fe_2O_3 | 1 | 1 | [Fe2O3] Na_2O | 1 | 1 | [Na2O] Na_2CrO_4 | 2 | 2 | ([Na2CrO4])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([Na2O2])^(-3) ([FeCr2O4])^(-2) [Fe2O3] [Na2O] ([Na2CrO4])^2 = ([Fe2O3] [Na2O] ([Na2CrO4])^2)/(([Na2O2])^3 ([FeCr2O4])^2)

Rate of reaction

Construct the rate of reaction expression for: Na_2O_2 + FeCr_2O_4 ⟶ Fe_2O_3 + Na_2O + Na_2CrO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 Na_2O_2 + 2 FeCr_2O_4 ⟶ Fe_2O_3 + Na_2O + 2 Na_2CrO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Na_2O_2 | 3 | -3 FeCr_2O_4 | 2 | -2 Fe_2O_3 | 1 | 1 Na_2O | 1 | 1 Na_2CrO_4 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Na_2O_2 | 3 | -3 | -1/3 (Δ[Na2O2])/(Δt) FeCr_2O_4 | 2 | -2 | -1/2 (Δ[FeCr2O4])/(Δt) Fe_2O_3 | 1 | 1 | (Δ[Fe2O3])/(Δt) Na_2O | 1 | 1 | (Δ[Na2O])/(Δt) Na_2CrO_4 | 2 | 2 | 1/2 (Δ[Na2CrO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/3 (Δ[Na2O2])/(Δt) = -1/2 (Δ[FeCr2O4])/(Δt) = (Δ[Fe2O3])/(Δt) = (Δ[Na2O])/(Δt) = 1/2 (Δ[Na2CrO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: Na_2O_2 + FeCr_2O_4 ⟶ Fe_2O_3 + Na_2O + Na_2CrO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 Na_2O_2 + 2 FeCr_2O_4 ⟶ Fe_2O_3 + Na_2O + 2 Na_2CrO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Na_2O_2 | 3 | -3 FeCr_2O_4 | 2 | -2 Fe_2O_3 | 1 | 1 Na_2O | 1 | 1 Na_2CrO_4 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Na_2O_2 | 3 | -3 | -1/3 (Δ[Na2O2])/(Δt) FeCr_2O_4 | 2 | -2 | -1/2 (Δ[FeCr2O4])/(Δt) Fe_2O_3 | 1 | 1 | (Δ[Fe2O3])/(Δt) Na_2O | 1 | 1 | (Δ[Na2O])/(Δt) Na_2CrO_4 | 2 | 2 | 1/2 (Δ[Na2CrO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/3 (Δ[Na2O2])/(Δt) = -1/2 (Δ[FeCr2O4])/(Δt) = (Δ[Fe2O3])/(Δt) = (Δ[Na2O])/(Δt) = 1/2 (Δ[Na2CrO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sodium peroxide | iron(II) chromite | iron(III) oxide | sodium oxide | sodium chromate formula | Na_2O_2 | FeCr_2O_4 | Fe_2O_3 | Na_2O | Na_2CrO_4 Hill formula | Na_2O_2 | Cr_2FeO_4 | Fe_2O_3 | Na_2O | CrNa_2O_4 name | sodium peroxide | iron(II) chromite | iron(III) oxide | sodium oxide | sodium chromate IUPAC name | disodium peroxide | | | disodium oxygen(-2) anion | disodium dioxido(dioxo)chromium
| sodium peroxide | iron(II) chromite | iron(III) oxide | sodium oxide | sodium chromate formula | Na_2O_2 | FeCr_2O_4 | Fe_2O_3 | Na_2O | Na_2CrO_4 Hill formula | Na_2O_2 | Cr_2FeO_4 | Fe_2O_3 | Na_2O | CrNa_2O_4 name | sodium peroxide | iron(II) chromite | iron(III) oxide | sodium oxide | sodium chromate IUPAC name | disodium peroxide | | | disodium oxygen(-2) anion | disodium dioxido(dioxo)chromium

Substance properties

 | sodium peroxide | iron(II) chromite | iron(III) oxide | sodium oxide | sodium chromate molar mass | 77.978 g/mol | 155.84 g/mol | 159.69 g/mol | 61.979 g/mol | 161.97 g/mol phase | solid (at STP) | | solid (at STP) | | solid (at STP) melting point | 660 °C | | 1565 °C | | 780 °C density | 2.805 g/cm^3 | 5 g/cm^3 | 5.26 g/cm^3 | 2.27 g/cm^3 | 2.698 g/cm^3 solubility in water | reacts | | insoluble | |  odor | | | odorless | |
| sodium peroxide | iron(II) chromite | iron(III) oxide | sodium oxide | sodium chromate molar mass | 77.978 g/mol | 155.84 g/mol | 159.69 g/mol | 61.979 g/mol | 161.97 g/mol phase | solid (at STP) | | solid (at STP) | | solid (at STP) melting point | 660 °C | | 1565 °C | | 780 °C density | 2.805 g/cm^3 | 5 g/cm^3 | 5.26 g/cm^3 | 2.27 g/cm^3 | 2.698 g/cm^3 solubility in water | reacts | | insoluble | | odor | | | odorless | |

Units