Search

FeSO4 + K3[Fe(CN)6] = K2SO4 + KCN + Fe4[Fe(CN)6]3

Input interpretation

FeSO_4 duretter + K_3Fe(CN)_6 potassium hexacyanoferrate(III) ⟶ K_2SO_4 potassium sulfate + KCN potassium cyanide + Fe4(Fe(CN)6)3
FeSO_4 duretter + K_3Fe(CN)_6 potassium hexacyanoferrate(III) ⟶ K_2SO_4 potassium sulfate + KCN potassium cyanide + Fe4(Fe(CN)6)3

Balanced equation

Balance the chemical equation algebraically: FeSO_4 + K_3Fe(CN)_6 ⟶ K_2SO_4 + KCN + Fe4(Fe(CN)6)3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 FeSO_4 + c_2 K_3Fe(CN)_6 ⟶ c_3 K_2SO_4 + c_4 KCN + c_5 Fe4(Fe(CN)6)3 Set the number of atoms in the reactants equal to the number of atoms in the products for Fe, O, S, C, K and N: Fe: | c_1 + c_2 = 7 c_5 O: | 4 c_1 = 4 c_3 S: | c_1 = c_3 C: | 6 c_2 = c_4 + 18 c_5 K: | 3 c_2 = 2 c_3 + c_4 N: | 6 c_2 = c_4 + 18 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_5 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 4 c_3 = 3 c_4 = 6 c_5 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 3 FeSO_4 + 4 K_3Fe(CN)_6 ⟶ 3 K_2SO_4 + 6 KCN + Fe4(Fe(CN)6)3
Balance the chemical equation algebraically: FeSO_4 + K_3Fe(CN)_6 ⟶ K_2SO_4 + KCN + Fe4(Fe(CN)6)3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 FeSO_4 + c_2 K_3Fe(CN)_6 ⟶ c_3 K_2SO_4 + c_4 KCN + c_5 Fe4(Fe(CN)6)3 Set the number of atoms in the reactants equal to the number of atoms in the products for Fe, O, S, C, K and N: Fe: | c_1 + c_2 = 7 c_5 O: | 4 c_1 = 4 c_3 S: | c_1 = c_3 C: | 6 c_2 = c_4 + 18 c_5 K: | 3 c_2 = 2 c_3 + c_4 N: | 6 c_2 = c_4 + 18 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_5 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 4 c_3 = 3 c_4 = 6 c_5 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 3 FeSO_4 + 4 K_3Fe(CN)_6 ⟶ 3 K_2SO_4 + 6 KCN + Fe4(Fe(CN)6)3

Structures

 + ⟶ + + Fe4(Fe(CN)6)3
+ ⟶ + + Fe4(Fe(CN)6)3

Names

duretter + potassium hexacyanoferrate(III) ⟶ potassium sulfate + potassium cyanide + Fe4(Fe(CN)6)3
duretter + potassium hexacyanoferrate(III) ⟶ potassium sulfate + potassium cyanide + Fe4(Fe(CN)6)3

Equilibrium constant

Construct the equilibrium constant, K, expression for: FeSO_4 + K_3Fe(CN)_6 ⟶ K_2SO_4 + KCN + Fe4(Fe(CN)6)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 FeSO_4 + 4 K_3Fe(CN)_6 ⟶ 3 K_2SO_4 + 6 KCN + Fe4(Fe(CN)6)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeSO_4 | 3 | -3 K_3Fe(CN)_6 | 4 | -4 K_2SO_4 | 3 | 3 KCN | 6 | 6 Fe4(Fe(CN)6)3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression FeSO_4 | 3 | -3 | ([FeSO4])^(-3) K_3Fe(CN)_6 | 4 | -4 | ([K3Fe(CN)6])^(-4) K_2SO_4 | 3 | 3 | ([K2SO4])^3 KCN | 6 | 6 | ([KCN])^6 Fe4(Fe(CN)6)3 | 1 | 1 | [Fe4(Fe(CN)6)3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([FeSO4])^(-3) ([K3Fe(CN)6])^(-4) ([K2SO4])^3 ([KCN])^6 [Fe4(Fe(CN)6)3] = (([K2SO4])^3 ([KCN])^6 [Fe4(Fe(CN)6)3])/(([FeSO4])^3 ([K3Fe(CN)6])^4)
Construct the equilibrium constant, K, expression for: FeSO_4 + K_3Fe(CN)_6 ⟶ K_2SO_4 + KCN + Fe4(Fe(CN)6)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 FeSO_4 + 4 K_3Fe(CN)_6 ⟶ 3 K_2SO_4 + 6 KCN + Fe4(Fe(CN)6)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeSO_4 | 3 | -3 K_3Fe(CN)_6 | 4 | -4 K_2SO_4 | 3 | 3 KCN | 6 | 6 Fe4(Fe(CN)6)3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression FeSO_4 | 3 | -3 | ([FeSO4])^(-3) K_3Fe(CN)_6 | 4 | -4 | ([K3Fe(CN)6])^(-4) K_2SO_4 | 3 | 3 | ([K2SO4])^3 KCN | 6 | 6 | ([KCN])^6 Fe4(Fe(CN)6)3 | 1 | 1 | [Fe4(Fe(CN)6)3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([FeSO4])^(-3) ([K3Fe(CN)6])^(-4) ([K2SO4])^3 ([KCN])^6 [Fe4(Fe(CN)6)3] = (([K2SO4])^3 ([KCN])^6 [Fe4(Fe(CN)6)3])/(([FeSO4])^3 ([K3Fe(CN)6])^4)

Rate of reaction

Construct the rate of reaction expression for: FeSO_4 + K_3Fe(CN)_6 ⟶ K_2SO_4 + KCN + Fe4(Fe(CN)6)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 FeSO_4 + 4 K_3Fe(CN)_6 ⟶ 3 K_2SO_4 + 6 KCN + Fe4(Fe(CN)6)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeSO_4 | 3 | -3 K_3Fe(CN)_6 | 4 | -4 K_2SO_4 | 3 | 3 KCN | 6 | 6 Fe4(Fe(CN)6)3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term FeSO_4 | 3 | -3 | -1/3 (Δ[FeSO4])/(Δt) K_3Fe(CN)_6 | 4 | -4 | -1/4 (Δ[K3Fe(CN)6])/(Δt) K_2SO_4 | 3 | 3 | 1/3 (Δ[K2SO4])/(Δt) KCN | 6 | 6 | 1/6 (Δ[KCN])/(Δt) Fe4(Fe(CN)6)3 | 1 | 1 | (Δ[Fe4(Fe(CN)6)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/3 (Δ[FeSO4])/(Δt) = -1/4 (Δ[K3Fe(CN)6])/(Δt) = 1/3 (Δ[K2SO4])/(Δt) = 1/6 (Δ[KCN])/(Δt) = (Δ[Fe4(Fe(CN)6)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: FeSO_4 + K_3Fe(CN)_6 ⟶ K_2SO_4 + KCN + Fe4(Fe(CN)6)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 FeSO_4 + 4 K_3Fe(CN)_6 ⟶ 3 K_2SO_4 + 6 KCN + Fe4(Fe(CN)6)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeSO_4 | 3 | -3 K_3Fe(CN)_6 | 4 | -4 K_2SO_4 | 3 | 3 KCN | 6 | 6 Fe4(Fe(CN)6)3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term FeSO_4 | 3 | -3 | -1/3 (Δ[FeSO4])/(Δt) K_3Fe(CN)_6 | 4 | -4 | -1/4 (Δ[K3Fe(CN)6])/(Δt) K_2SO_4 | 3 | 3 | 1/3 (Δ[K2SO4])/(Δt) KCN | 6 | 6 | 1/6 (Δ[KCN])/(Δt) Fe4(Fe(CN)6)3 | 1 | 1 | (Δ[Fe4(Fe(CN)6)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/3 (Δ[FeSO4])/(Δt) = -1/4 (Δ[K3Fe(CN)6])/(Δt) = 1/3 (Δ[K2SO4])/(Δt) = 1/6 (Δ[KCN])/(Δt) = (Δ[Fe4(Fe(CN)6)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | duretter | potassium hexacyanoferrate(III) | potassium sulfate | potassium cyanide | Fe4(Fe(CN)6)3 formula | FeSO_4 | K_3Fe(CN)_6 | K_2SO_4 | KCN | Fe4(Fe(CN)6)3 Hill formula | FeO_4S | C_6FeK_3N_6 | K_2O_4S | CKN | C18Fe7N18 name | duretter | potassium hexacyanoferrate(III) | potassium sulfate | potassium cyanide |  IUPAC name | iron(+2) cation sulfate | ferric tripotassium hexacyanide | dipotassium sulfate | potassium cyanide |
| duretter | potassium hexacyanoferrate(III) | potassium sulfate | potassium cyanide | Fe4(Fe(CN)6)3 formula | FeSO_4 | K_3Fe(CN)_6 | K_2SO_4 | KCN | Fe4(Fe(CN)6)3 Hill formula | FeO_4S | C_6FeK_3N_6 | K_2O_4S | CKN | C18Fe7N18 name | duretter | potassium hexacyanoferrate(III) | potassium sulfate | potassium cyanide | IUPAC name | iron(+2) cation sulfate | ferric tripotassium hexacyanide | dipotassium sulfate | potassium cyanide |

Substance properties

 | duretter | potassium hexacyanoferrate(III) | potassium sulfate | potassium cyanide | Fe4(Fe(CN)6)3 molar mass | 151.9 g/mol | 329.25 g/mol | 174.25 g/mol | 65.116 g/mol | 859.24 g/mol density | 2.841 g/cm^3 | 1.723 g/cm^3 | | |  solubility in water | | | soluble | |
| duretter | potassium hexacyanoferrate(III) | potassium sulfate | potassium cyanide | Fe4(Fe(CN)6)3 molar mass | 151.9 g/mol | 329.25 g/mol | 174.25 g/mol | 65.116 g/mol | 859.24 g/mol density | 2.841 g/cm^3 | 1.723 g/cm^3 | | | solubility in water | | | soluble | |

Units