Search

H2SO4 + FeSO4 + HClO3 = H2O + HCl + Fe2(SO4)3

Input interpretation

H_2SO_4 sulfuric acid + FeSO_4 duretter + HClO3 ⟶ H_2O water + HCl hydrogen chloride + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate
H_2SO_4 sulfuric acid + FeSO_4 duretter + HClO3 ⟶ H_2O water + HCl hydrogen chloride + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + FeSO_4 + HClO3 ⟶ H_2O + HCl + Fe_2(SO_4)_3·xH_2O Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 FeSO_4 + c_3 HClO3 ⟶ c_4 H_2O + c_5 HCl + c_6 Fe_2(SO_4)_3·xH_2O Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Fe and Cl: H: | 2 c_1 + c_3 = 2 c_4 + c_5 O: | 4 c_1 + 4 c_2 + 3 c_3 = c_4 + 12 c_6 S: | c_1 + c_2 = 3 c_6 Fe: | c_2 = 2 c_6 Cl: | c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 6 c_3 = 1 c_4 = 3 c_5 = 1 c_6 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 3 H_2SO_4 + 6 FeSO_4 + HClO3 ⟶ 3 H_2O + HCl + 3 Fe_2(SO_4)_3·xH_2O
Balance the chemical equation algebraically: H_2SO_4 + FeSO_4 + HClO3 ⟶ H_2O + HCl + Fe_2(SO_4)_3·xH_2O Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 FeSO_4 + c_3 HClO3 ⟶ c_4 H_2O + c_5 HCl + c_6 Fe_2(SO_4)_3·xH_2O Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Fe and Cl: H: | 2 c_1 + c_3 = 2 c_4 + c_5 O: | 4 c_1 + 4 c_2 + 3 c_3 = c_4 + 12 c_6 S: | c_1 + c_2 = 3 c_6 Fe: | c_2 = 2 c_6 Cl: | c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 6 c_3 = 1 c_4 = 3 c_5 = 1 c_6 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 3 H_2SO_4 + 6 FeSO_4 + HClO3 ⟶ 3 H_2O + HCl + 3 Fe_2(SO_4)_3·xH_2O

Structures

 + + HClO3 ⟶ + +
+ + HClO3 ⟶ + +

Names

sulfuric acid + duretter + HClO3 ⟶ water + hydrogen chloride + iron(III) sulfate hydrate
sulfuric acid + duretter + HClO3 ⟶ water + hydrogen chloride + iron(III) sulfate hydrate

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + FeSO_4 + HClO3 ⟶ H_2O + HCl + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 H_2SO_4 + 6 FeSO_4 + HClO3 ⟶ 3 H_2O + HCl + 3 Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 3 | -3 FeSO_4 | 6 | -6 HClO3 | 1 | -1 H_2O | 3 | 3 HCl | 1 | 1 Fe_2(SO_4)_3·xH_2O | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 3 | -3 | ([H2SO4])^(-3) FeSO_4 | 6 | -6 | ([FeSO4])^(-6) HClO3 | 1 | -1 | ([HClO3])^(-1) H_2O | 3 | 3 | ([H2O])^3 HCl | 1 | 1 | [HCl] Fe_2(SO_4)_3·xH_2O | 3 | 3 | ([Fe2(SO4)3·xH2O])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-3) ([FeSO4])^(-6) ([HClO3])^(-1) ([H2O])^3 [HCl] ([Fe2(SO4)3·xH2O])^3 = (([H2O])^3 [HCl] ([Fe2(SO4)3·xH2O])^3)/(([H2SO4])^3 ([FeSO4])^6 [HClO3])
Construct the equilibrium constant, K, expression for: H_2SO_4 + FeSO_4 + HClO3 ⟶ H_2O + HCl + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 H_2SO_4 + 6 FeSO_4 + HClO3 ⟶ 3 H_2O + HCl + 3 Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 3 | -3 FeSO_4 | 6 | -6 HClO3 | 1 | -1 H_2O | 3 | 3 HCl | 1 | 1 Fe_2(SO_4)_3·xH_2O | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 3 | -3 | ([H2SO4])^(-3) FeSO_4 | 6 | -6 | ([FeSO4])^(-6) HClO3 | 1 | -1 | ([HClO3])^(-1) H_2O | 3 | 3 | ([H2O])^3 HCl | 1 | 1 | [HCl] Fe_2(SO_4)_3·xH_2O | 3 | 3 | ([Fe2(SO4)3·xH2O])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-3) ([FeSO4])^(-6) ([HClO3])^(-1) ([H2O])^3 [HCl] ([Fe2(SO4)3·xH2O])^3 = (([H2O])^3 [HCl] ([Fe2(SO4)3·xH2O])^3)/(([H2SO4])^3 ([FeSO4])^6 [HClO3])

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + FeSO_4 + HClO3 ⟶ H_2O + HCl + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 H_2SO_4 + 6 FeSO_4 + HClO3 ⟶ 3 H_2O + HCl + 3 Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 3 | -3 FeSO_4 | 6 | -6 HClO3 | 1 | -1 H_2O | 3 | 3 HCl | 1 | 1 Fe_2(SO_4)_3·xH_2O | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 3 | -3 | -1/3 (Δ[H2SO4])/(Δt) FeSO_4 | 6 | -6 | -1/6 (Δ[FeSO4])/(Δt) HClO3 | 1 | -1 | -(Δ[HClO3])/(Δt) H_2O | 3 | 3 | 1/3 (Δ[H2O])/(Δt) HCl | 1 | 1 | (Δ[HCl])/(Δt) Fe_2(SO_4)_3·xH_2O | 3 | 3 | 1/3 (Δ[Fe2(SO4)3·xH2O])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/3 (Δ[H2SO4])/(Δt) = -1/6 (Δ[FeSO4])/(Δt) = -(Δ[HClO3])/(Δt) = 1/3 (Δ[H2O])/(Δt) = (Δ[HCl])/(Δt) = 1/3 (Δ[Fe2(SO4)3·xH2O])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + FeSO_4 + HClO3 ⟶ H_2O + HCl + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 H_2SO_4 + 6 FeSO_4 + HClO3 ⟶ 3 H_2O + HCl + 3 Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 3 | -3 FeSO_4 | 6 | -6 HClO3 | 1 | -1 H_2O | 3 | 3 HCl | 1 | 1 Fe_2(SO_4)_3·xH_2O | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 3 | -3 | -1/3 (Δ[H2SO4])/(Δt) FeSO_4 | 6 | -6 | -1/6 (Δ[FeSO4])/(Δt) HClO3 | 1 | -1 | -(Δ[HClO3])/(Δt) H_2O | 3 | 3 | 1/3 (Δ[H2O])/(Δt) HCl | 1 | 1 | (Δ[HCl])/(Δt) Fe_2(SO_4)_3·xH_2O | 3 | 3 | 1/3 (Δ[Fe2(SO4)3·xH2O])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/3 (Δ[H2SO4])/(Δt) = -1/6 (Δ[FeSO4])/(Δt) = -(Δ[HClO3])/(Δt) = 1/3 (Δ[H2O])/(Δt) = (Δ[HCl])/(Δt) = 1/3 (Δ[Fe2(SO4)3·xH2O])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | duretter | HClO3 | water | hydrogen chloride | iron(III) sulfate hydrate formula | H_2SO_4 | FeSO_4 | HClO3 | H_2O | HCl | Fe_2(SO_4)_3·xH_2O Hill formula | H_2O_4S | FeO_4S | HClO3 | H_2O | ClH | Fe_2O_12S_3 name | sulfuric acid | duretter | | water | hydrogen chloride | iron(III) sulfate hydrate IUPAC name | sulfuric acid | iron(+2) cation sulfate | | water | hydrogen chloride | diferric trisulfate
| sulfuric acid | duretter | HClO3 | water | hydrogen chloride | iron(III) sulfate hydrate formula | H_2SO_4 | FeSO_4 | HClO3 | H_2O | HCl | Fe_2(SO_4)_3·xH_2O Hill formula | H_2O_4S | FeO_4S | HClO3 | H_2O | ClH | Fe_2O_12S_3 name | sulfuric acid | duretter | | water | hydrogen chloride | iron(III) sulfate hydrate IUPAC name | sulfuric acid | iron(+2) cation sulfate | | water | hydrogen chloride | diferric trisulfate

Substance properties

 | sulfuric acid | duretter | HClO3 | water | hydrogen chloride | iron(III) sulfate hydrate molar mass | 98.07 g/mol | 151.9 g/mol | 84.45 g/mol | 18.015 g/mol | 36.46 g/mol | 399.9 g/mol phase | liquid (at STP) | | | liquid (at STP) | gas (at STP) |  melting point | 10.371 °C | | | 0 °C | -114.17 °C |  boiling point | 279.6 °C | | | 99.9839 °C | -85 °C |  density | 1.8305 g/cm^3 | 2.841 g/cm^3 | | 1 g/cm^3 | 0.00149 g/cm^3 (at 25 °C) |  solubility in water | very soluble | | | | miscible | slightly soluble surface tension | 0.0735 N/m | | | 0.0728 N/m | |  dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | |  odor | odorless | | | odorless | |
| sulfuric acid | duretter | HClO3 | water | hydrogen chloride | iron(III) sulfate hydrate molar mass | 98.07 g/mol | 151.9 g/mol | 84.45 g/mol | 18.015 g/mol | 36.46 g/mol | 399.9 g/mol phase | liquid (at STP) | | | liquid (at STP) | gas (at STP) | melting point | 10.371 °C | | | 0 °C | -114.17 °C | boiling point | 279.6 °C | | | 99.9839 °C | -85 °C | density | 1.8305 g/cm^3 | 2.841 g/cm^3 | | 1 g/cm^3 | 0.00149 g/cm^3 (at 25 °C) | solubility in water | very soluble | | | | miscible | slightly soluble surface tension | 0.0735 N/m | | | 0.0728 N/m | | dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | odor | odorless | | | odorless | |

Units