Search

H2SO4 + KNO2 + CrSO4 = H2O + K2SO4 + N2 + Cr2(SO4)3

Input interpretation

H_2SO_4 sulfuric acid + KNO_2 potassium nitrite + CrSO4 ⟶ H_2O water + K_2SO_4 potassium sulfate + N_2 nitrogen + Cr_2(SO_4)_3 chromium sulfate
H_2SO_4 sulfuric acid + KNO_2 potassium nitrite + CrSO4 ⟶ H_2O water + K_2SO_4 potassium sulfate + N_2 nitrogen + Cr_2(SO_4)_3 chromium sulfate

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + KNO_2 + CrSO4 ⟶ H_2O + K_2SO_4 + N_2 + Cr_2(SO_4)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 KNO_2 + c_3 CrSO4 ⟶ c_4 H_2O + c_5 K_2SO_4 + c_6 N_2 + c_7 Cr_2(SO_4)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K, N and Cr: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 2 c_2 + 4 c_3 = c_4 + 4 c_5 + 12 c_7 S: | c_1 + c_3 = c_5 + 3 c_7 K: | c_2 = 2 c_5 N: | c_2 = 2 c_6 Cr: | c_3 = 2 c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_5 = 1 and solve the system of equations for the remaining coefficients: c_1 = 4 c_2 = 2 c_3 = 6 c_4 = 4 c_5 = 1 c_6 = 1 c_7 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 4 H_2SO_4 + 2 KNO_2 + 6 CrSO4 ⟶ 4 H_2O + K_2SO_4 + N_2 + 3 Cr_2(SO_4)_3
Balance the chemical equation algebraically: H_2SO_4 + KNO_2 + CrSO4 ⟶ H_2O + K_2SO_4 + N_2 + Cr_2(SO_4)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 KNO_2 + c_3 CrSO4 ⟶ c_4 H_2O + c_5 K_2SO_4 + c_6 N_2 + c_7 Cr_2(SO_4)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K, N and Cr: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 2 c_2 + 4 c_3 = c_4 + 4 c_5 + 12 c_7 S: | c_1 + c_3 = c_5 + 3 c_7 K: | c_2 = 2 c_5 N: | c_2 = 2 c_6 Cr: | c_3 = 2 c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_5 = 1 and solve the system of equations for the remaining coefficients: c_1 = 4 c_2 = 2 c_3 = 6 c_4 = 4 c_5 = 1 c_6 = 1 c_7 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 4 H_2SO_4 + 2 KNO_2 + 6 CrSO4 ⟶ 4 H_2O + K_2SO_4 + N_2 + 3 Cr_2(SO_4)_3

Structures

 + + CrSO4 ⟶ + + +
+ + CrSO4 ⟶ + + +

Names

sulfuric acid + potassium nitrite + CrSO4 ⟶ water + potassium sulfate + nitrogen + chromium sulfate
sulfuric acid + potassium nitrite + CrSO4 ⟶ water + potassium sulfate + nitrogen + chromium sulfate

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + KNO_2 + CrSO4 ⟶ H_2O + K_2SO_4 + N_2 + Cr_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 4 H_2SO_4 + 2 KNO_2 + 6 CrSO4 ⟶ 4 H_2O + K_2SO_4 + N_2 + 3 Cr_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 4 | -4 KNO_2 | 2 | -2 CrSO4 | 6 | -6 H_2O | 4 | 4 K_2SO_4 | 1 | 1 N_2 | 1 | 1 Cr_2(SO_4)_3 | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 4 | -4 | ([H2SO4])^(-4) KNO_2 | 2 | -2 | ([KNO2])^(-2) CrSO4 | 6 | -6 | ([CrSO4])^(-6) H_2O | 4 | 4 | ([H2O])^4 K_2SO_4 | 1 | 1 | [K2SO4] N_2 | 1 | 1 | [N2] Cr_2(SO_4)_3 | 3 | 3 | ([Cr2(SO4)3])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-4) ([KNO2])^(-2) ([CrSO4])^(-6) ([H2O])^4 [K2SO4] [N2] ([Cr2(SO4)3])^3 = (([H2O])^4 [K2SO4] [N2] ([Cr2(SO4)3])^3)/(([H2SO4])^4 ([KNO2])^2 ([CrSO4])^6)
Construct the equilibrium constant, K, expression for: H_2SO_4 + KNO_2 + CrSO4 ⟶ H_2O + K_2SO_4 + N_2 + Cr_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 4 H_2SO_4 + 2 KNO_2 + 6 CrSO4 ⟶ 4 H_2O + K_2SO_4 + N_2 + 3 Cr_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 4 | -4 KNO_2 | 2 | -2 CrSO4 | 6 | -6 H_2O | 4 | 4 K_2SO_4 | 1 | 1 N_2 | 1 | 1 Cr_2(SO_4)_3 | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 4 | -4 | ([H2SO4])^(-4) KNO_2 | 2 | -2 | ([KNO2])^(-2) CrSO4 | 6 | -6 | ([CrSO4])^(-6) H_2O | 4 | 4 | ([H2O])^4 K_2SO_4 | 1 | 1 | [K2SO4] N_2 | 1 | 1 | [N2] Cr_2(SO_4)_3 | 3 | 3 | ([Cr2(SO4)3])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-4) ([KNO2])^(-2) ([CrSO4])^(-6) ([H2O])^4 [K2SO4] [N2] ([Cr2(SO4)3])^3 = (([H2O])^4 [K2SO4] [N2] ([Cr2(SO4)3])^3)/(([H2SO4])^4 ([KNO2])^2 ([CrSO4])^6)

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + KNO_2 + CrSO4 ⟶ H_2O + K_2SO_4 + N_2 + Cr_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 4 H_2SO_4 + 2 KNO_2 + 6 CrSO4 ⟶ 4 H_2O + K_2SO_4 + N_2 + 3 Cr_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 4 | -4 KNO_2 | 2 | -2 CrSO4 | 6 | -6 H_2O | 4 | 4 K_2SO_4 | 1 | 1 N_2 | 1 | 1 Cr_2(SO_4)_3 | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 4 | -4 | -1/4 (Δ[H2SO4])/(Δt) KNO_2 | 2 | -2 | -1/2 (Δ[KNO2])/(Δt) CrSO4 | 6 | -6 | -1/6 (Δ[CrSO4])/(Δt) H_2O | 4 | 4 | 1/4 (Δ[H2O])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) N_2 | 1 | 1 | (Δ[N2])/(Δt) Cr_2(SO_4)_3 | 3 | 3 | 1/3 (Δ[Cr2(SO4)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/4 (Δ[H2SO4])/(Δt) = -1/2 (Δ[KNO2])/(Δt) = -1/6 (Δ[CrSO4])/(Δt) = 1/4 (Δ[H2O])/(Δt) = (Δ[K2SO4])/(Δt) = (Δ[N2])/(Δt) = 1/3 (Δ[Cr2(SO4)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + KNO_2 + CrSO4 ⟶ H_2O + K_2SO_4 + N_2 + Cr_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 4 H_2SO_4 + 2 KNO_2 + 6 CrSO4 ⟶ 4 H_2O + K_2SO_4 + N_2 + 3 Cr_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 4 | -4 KNO_2 | 2 | -2 CrSO4 | 6 | -6 H_2O | 4 | 4 K_2SO_4 | 1 | 1 N_2 | 1 | 1 Cr_2(SO_4)_3 | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 4 | -4 | -1/4 (Δ[H2SO4])/(Δt) KNO_2 | 2 | -2 | -1/2 (Δ[KNO2])/(Δt) CrSO4 | 6 | -6 | -1/6 (Δ[CrSO4])/(Δt) H_2O | 4 | 4 | 1/4 (Δ[H2O])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) N_2 | 1 | 1 | (Δ[N2])/(Δt) Cr_2(SO_4)_3 | 3 | 3 | 1/3 (Δ[Cr2(SO4)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/4 (Δ[H2SO4])/(Δt) = -1/2 (Δ[KNO2])/(Δt) = -1/6 (Δ[CrSO4])/(Δt) = 1/4 (Δ[H2O])/(Δt) = (Δ[K2SO4])/(Δt) = (Δ[N2])/(Δt) = 1/3 (Δ[Cr2(SO4)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | potassium nitrite | CrSO4 | water | potassium sulfate | nitrogen | chromium sulfate formula | H_2SO_4 | KNO_2 | CrSO4 | H_2O | K_2SO_4 | N_2 | Cr_2(SO_4)_3 Hill formula | H_2O_4S | KNO_2 | CrO4S | H_2O | K_2O_4S | N_2 | Cr_2O_12S_3 name | sulfuric acid | potassium nitrite | | water | potassium sulfate | nitrogen | chromium sulfate IUPAC name | sulfuric acid | potassium nitrite | | water | dipotassium sulfate | molecular nitrogen | chromium(+3) cation trisulfate
| sulfuric acid | potassium nitrite | CrSO4 | water | potassium sulfate | nitrogen | chromium sulfate formula | H_2SO_4 | KNO_2 | CrSO4 | H_2O | K_2SO_4 | N_2 | Cr_2(SO_4)_3 Hill formula | H_2O_4S | KNO_2 | CrO4S | H_2O | K_2O_4S | N_2 | Cr_2O_12S_3 name | sulfuric acid | potassium nitrite | | water | potassium sulfate | nitrogen | chromium sulfate IUPAC name | sulfuric acid | potassium nitrite | | water | dipotassium sulfate | molecular nitrogen | chromium(+3) cation trisulfate

Substance properties

 | sulfuric acid | potassium nitrite | CrSO4 | water | potassium sulfate | nitrogen | chromium sulfate molar mass | 98.07 g/mol | 85.103 g/mol | 148.05 g/mol | 18.015 g/mol | 174.25 g/mol | 28.014 g/mol | 392.2 g/mol phase | liquid (at STP) | solid (at STP) | | liquid (at STP) | | gas (at STP) | liquid (at STP) melting point | 10.371 °C | 350 °C | | 0 °C | | -210 °C |  boiling point | 279.6 °C | | | 99.9839 °C | | -195.79 °C | 330 °C density | 1.8305 g/cm^3 | 1.915 g/cm^3 | | 1 g/cm^3 | | 0.001251 g/cm^3 (at 0 °C) | 1.84 g/cm^3 solubility in water | very soluble | | | | soluble | insoluble |  surface tension | 0.0735 N/m | | | 0.0728 N/m | | 0.0066 N/m |  dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | 1.78×10^-5 Pa s (at 25 °C) |  odor | odorless | | | odorless | | odorless | odorless
| sulfuric acid | potassium nitrite | CrSO4 | water | potassium sulfate | nitrogen | chromium sulfate molar mass | 98.07 g/mol | 85.103 g/mol | 148.05 g/mol | 18.015 g/mol | 174.25 g/mol | 28.014 g/mol | 392.2 g/mol phase | liquid (at STP) | solid (at STP) | | liquid (at STP) | | gas (at STP) | liquid (at STP) melting point | 10.371 °C | 350 °C | | 0 °C | | -210 °C | boiling point | 279.6 °C | | | 99.9839 °C | | -195.79 °C | 330 °C density | 1.8305 g/cm^3 | 1.915 g/cm^3 | | 1 g/cm^3 | | 0.001251 g/cm^3 (at 0 °C) | 1.84 g/cm^3 solubility in water | very soluble | | | | soluble | insoluble | surface tension | 0.0735 N/m | | | 0.0728 N/m | | 0.0066 N/m | dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | 1.78×10^-5 Pa s (at 25 °C) | odor | odorless | | | odorless | | odorless | odorless

Units