Search

H2O + AuCl3 + Se = HCl + Au + H2SeO3

Input interpretation

H_2O water + AuCl_3 gold(III) chloride + Se gray selenium ⟶ HCl hydrogen chloride + Au gold + H_2SeO_3 selenious acid
H_2O water + AuCl_3 gold(III) chloride + Se gray selenium ⟶ HCl hydrogen chloride + Au gold + H_2SeO_3 selenious acid

Balanced equation

Balance the chemical equation algebraically: H_2O + AuCl_3 + Se ⟶ HCl + Au + H_2SeO_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 AuCl_3 + c_3 Se ⟶ c_4 HCl + c_5 Au + c_6 H_2SeO_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, Au, Cl and Se: H: | 2 c_1 = c_4 + 2 c_6 O: | c_1 = 3 c_6 Au: | c_2 = c_5 Cl: | 3 c_2 = c_4 Se: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 4/3 c_3 = 1 c_4 = 4 c_5 = 4/3 c_6 = 1 Multiply by the least common denominator, 3, to eliminate fractional coefficients: c_1 = 9 c_2 = 4 c_3 = 3 c_4 = 12 c_5 = 4 c_6 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 9 H_2O + 4 AuCl_3 + 3 Se ⟶ 12 HCl + 4 Au + 3 H_2SeO_3
Balance the chemical equation algebraically: H_2O + AuCl_3 + Se ⟶ HCl + Au + H_2SeO_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 AuCl_3 + c_3 Se ⟶ c_4 HCl + c_5 Au + c_6 H_2SeO_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, Au, Cl and Se: H: | 2 c_1 = c_4 + 2 c_6 O: | c_1 = 3 c_6 Au: | c_2 = c_5 Cl: | 3 c_2 = c_4 Se: | c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 4/3 c_3 = 1 c_4 = 4 c_5 = 4/3 c_6 = 1 Multiply by the least common denominator, 3, to eliminate fractional coefficients: c_1 = 9 c_2 = 4 c_3 = 3 c_4 = 12 c_5 = 4 c_6 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 9 H_2O + 4 AuCl_3 + 3 Se ⟶ 12 HCl + 4 Au + 3 H_2SeO_3

Structures

 + + ⟶ + +
+ + ⟶ + +

Names

water + gold(III) chloride + gray selenium ⟶ hydrogen chloride + gold + selenious acid
water + gold(III) chloride + gray selenium ⟶ hydrogen chloride + gold + selenious acid

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2O + AuCl_3 + Se ⟶ HCl + Au + H_2SeO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 9 H_2O + 4 AuCl_3 + 3 Se ⟶ 12 HCl + 4 Au + 3 H_2SeO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 9 | -9 AuCl_3 | 4 | -4 Se | 3 | -3 HCl | 12 | 12 Au | 4 | 4 H_2SeO_3 | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 9 | -9 | ([H2O])^(-9) AuCl_3 | 4 | -4 | ([AuCl3])^(-4) Se | 3 | -3 | ([Se])^(-3) HCl | 12 | 12 | ([HCl])^12 Au | 4 | 4 | ([Au])^4 H_2SeO_3 | 3 | 3 | ([H2SeO3])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2O])^(-9) ([AuCl3])^(-4) ([Se])^(-3) ([HCl])^12 ([Au])^4 ([H2SeO3])^3 = (([HCl])^12 ([Au])^4 ([H2SeO3])^3)/(([H2O])^9 ([AuCl3])^4 ([Se])^3)
Construct the equilibrium constant, K, expression for: H_2O + AuCl_3 + Se ⟶ HCl + Au + H_2SeO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 9 H_2O + 4 AuCl_3 + 3 Se ⟶ 12 HCl + 4 Au + 3 H_2SeO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 9 | -9 AuCl_3 | 4 | -4 Se | 3 | -3 HCl | 12 | 12 Au | 4 | 4 H_2SeO_3 | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 9 | -9 | ([H2O])^(-9) AuCl_3 | 4 | -4 | ([AuCl3])^(-4) Se | 3 | -3 | ([Se])^(-3) HCl | 12 | 12 | ([HCl])^12 Au | 4 | 4 | ([Au])^4 H_2SeO_3 | 3 | 3 | ([H2SeO3])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2O])^(-9) ([AuCl3])^(-4) ([Se])^(-3) ([HCl])^12 ([Au])^4 ([H2SeO3])^3 = (([HCl])^12 ([Au])^4 ([H2SeO3])^3)/(([H2O])^9 ([AuCl3])^4 ([Se])^3)

Rate of reaction

Construct the rate of reaction expression for: H_2O + AuCl_3 + Se ⟶ HCl + Au + H_2SeO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 9 H_2O + 4 AuCl_3 + 3 Se ⟶ 12 HCl + 4 Au + 3 H_2SeO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 9 | -9 AuCl_3 | 4 | -4 Se | 3 | -3 HCl | 12 | 12 Au | 4 | 4 H_2SeO_3 | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 9 | -9 | -1/9 (Δ[H2O])/(Δt) AuCl_3 | 4 | -4 | -1/4 (Δ[AuCl3])/(Δt) Se | 3 | -3 | -1/3 (Δ[Se])/(Δt) HCl | 12 | 12 | 1/12 (Δ[HCl])/(Δt) Au | 4 | 4 | 1/4 (Δ[Au])/(Δt) H_2SeO_3 | 3 | 3 | 1/3 (Δ[H2SeO3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/9 (Δ[H2O])/(Δt) = -1/4 (Δ[AuCl3])/(Δt) = -1/3 (Δ[Se])/(Δt) = 1/12 (Δ[HCl])/(Δt) = 1/4 (Δ[Au])/(Δt) = 1/3 (Δ[H2SeO3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2O + AuCl_3 + Se ⟶ HCl + Au + H_2SeO_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 9 H_2O + 4 AuCl_3 + 3 Se ⟶ 12 HCl + 4 Au + 3 H_2SeO_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 9 | -9 AuCl_3 | 4 | -4 Se | 3 | -3 HCl | 12 | 12 Au | 4 | 4 H_2SeO_3 | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 9 | -9 | -1/9 (Δ[H2O])/(Δt) AuCl_3 | 4 | -4 | -1/4 (Δ[AuCl3])/(Δt) Se | 3 | -3 | -1/3 (Δ[Se])/(Δt) HCl | 12 | 12 | 1/12 (Δ[HCl])/(Δt) Au | 4 | 4 | 1/4 (Δ[Au])/(Δt) H_2SeO_3 | 3 | 3 | 1/3 (Δ[H2SeO3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/9 (Δ[H2O])/(Δt) = -1/4 (Δ[AuCl3])/(Δt) = -1/3 (Δ[Se])/(Δt) = 1/12 (Δ[HCl])/(Δt) = 1/4 (Δ[Au])/(Δt) = 1/3 (Δ[H2SeO3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | water | gold(III) chloride | gray selenium | hydrogen chloride | gold | selenious acid formula | H_2O | AuCl_3 | Se | HCl | Au | H_2SeO_3 Hill formula | H_2O | AuCl_3 | Se | ClH | Au | H_2O_3Se name | water | gold(III) chloride | gray selenium | hydrogen chloride | gold | selenious acid IUPAC name | water | trichlorogold | selenium | hydrogen chloride | gold | selenous acid
| water | gold(III) chloride | gray selenium | hydrogen chloride | gold | selenious acid formula | H_2O | AuCl_3 | Se | HCl | Au | H_2SeO_3 Hill formula | H_2O | AuCl_3 | Se | ClH | Au | H_2O_3Se name | water | gold(III) chloride | gray selenium | hydrogen chloride | gold | selenious acid IUPAC name | water | trichlorogold | selenium | hydrogen chloride | gold | selenous acid