Input interpretation
NaOH sodium hydroxide + Fe iron ⟶ H_2 hydrogen + FeNa2O2
Balanced equation
Balance the chemical equation algebraically: NaOH + Fe ⟶ H_2 + FeNa2O2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 NaOH + c_2 Fe ⟶ c_3 H_2 + c_4 FeNa2O2 Set the number of atoms in the reactants equal to the number of atoms in the products for H, Na, O and Fe: H: | c_1 = 2 c_3 Na: | c_1 = 2 c_4 O: | c_1 = 2 c_4 Fe: | c_2 = c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 2 c_2 = 1 c_3 = 1 c_4 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 2 NaOH + Fe ⟶ H_2 + FeNa2O2
Structures
+ ⟶ + FeNa2O2
Names
sodium hydroxide + iron ⟶ hydrogen + FeNa2O2
Equilibrium constant
Construct the equilibrium constant, K, expression for: NaOH + Fe ⟶ H_2 + FeNa2O2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 2 NaOH + Fe ⟶ H_2 + FeNa2O2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i NaOH | 2 | -2 Fe | 1 | -1 H_2 | 1 | 1 FeNa2O2 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression NaOH | 2 | -2 | ([NaOH])^(-2) Fe | 1 | -1 | ([Fe])^(-1) H_2 | 1 | 1 | [H2] FeNa2O2 | 1 | 1 | [FeNa2O2] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([NaOH])^(-2) ([Fe])^(-1) [H2] [FeNa2O2] = ([H2] [FeNa2O2])/(([NaOH])^2 [Fe])
Rate of reaction
Construct the rate of reaction expression for: NaOH + Fe ⟶ H_2 + FeNa2O2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 2 NaOH + Fe ⟶ H_2 + FeNa2O2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i NaOH | 2 | -2 Fe | 1 | -1 H_2 | 1 | 1 FeNa2O2 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term NaOH | 2 | -2 | -1/2 (Δ[NaOH])/(Δt) Fe | 1 | -1 | -(Δ[Fe])/(Δt) H_2 | 1 | 1 | (Δ[H2])/(Δt) FeNa2O2 | 1 | 1 | (Δ[FeNa2O2])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/2 (Δ[NaOH])/(Δt) = -(Δ[Fe])/(Δt) = (Δ[H2])/(Δt) = (Δ[FeNa2O2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Chemical names and formulas
| sodium hydroxide | iron | hydrogen | FeNa2O2 formula | NaOH | Fe | H_2 | FeNa2O2 Hill formula | HNaO | Fe | H_2 | FeNa2O2 name | sodium hydroxide | iron | hydrogen | IUPAC name | sodium hydroxide | iron | molecular hydrogen |
Substance properties
| sodium hydroxide | iron | hydrogen | FeNa2O2 molar mass | 39.997 g/mol | 55.845 g/mol | 2.016 g/mol | 133.82 g/mol phase | solid (at STP) | solid (at STP) | gas (at STP) | melting point | 323 °C | 1535 °C | -259.2 °C | boiling point | 1390 °C | 2750 °C | -252.8 °C | density | 2.13 g/cm^3 | 7.874 g/cm^3 | 8.99×10^-5 g/cm^3 (at 0 °C) | solubility in water | soluble | insoluble | | surface tension | 0.07435 N/m | | | dynamic viscosity | 0.004 Pa s (at 350 °C) | | 8.9×10^-6 Pa s (at 25 °C) | odor | | | odorless |
Units