Search

NaOH + MnSO4 + Ca(ClO)2 = H2O + Na2SO4 + CaCl2 + Na2MnO4

Input interpretation

NaOH sodium hydroxide + MnSO_4 manganese(II) sulfate + Ca(ClO)2 ⟶ H_2O water + Na_2SO_4 sodium sulfate + CaCl_2 calcium chloride + Na2MnO4
NaOH sodium hydroxide + MnSO_4 manganese(II) sulfate + Ca(ClO)2 ⟶ H_2O water + Na_2SO_4 sodium sulfate + CaCl_2 calcium chloride + Na2MnO4

Balanced equation

Balance the chemical equation algebraically: NaOH + MnSO_4 + Ca(ClO)2 ⟶ H_2O + Na_2SO_4 + CaCl_2 + Na2MnO4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 NaOH + c_2 MnSO_4 + c_3 Ca(ClO)2 ⟶ c_4 H_2O + c_5 Na_2SO_4 + c_6 CaCl_2 + c_7 Na2MnO4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, Na, O, Mn, S, Ca and Cl: H: | c_1 = 2 c_4 Na: | c_1 = 2 c_5 + 2 c_7 O: | c_1 + 4 c_2 + 2 c_3 = c_4 + 4 c_5 + 4 c_7 Mn: | c_2 = c_7 S: | c_2 = c_5 Ca: | c_3 = c_6 Cl: | 2 c_3 = 2 c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 4 c_2 = 1 c_3 = 1 c_4 = 2 c_5 = 1 c_6 = 1 c_7 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 4 NaOH + MnSO_4 + Ca(ClO)2 ⟶ 2 H_2O + Na_2SO_4 + CaCl_2 + Na2MnO4
Balance the chemical equation algebraically: NaOH + MnSO_4 + Ca(ClO)2 ⟶ H_2O + Na_2SO_4 + CaCl_2 + Na2MnO4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 NaOH + c_2 MnSO_4 + c_3 Ca(ClO)2 ⟶ c_4 H_2O + c_5 Na_2SO_4 + c_6 CaCl_2 + c_7 Na2MnO4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, Na, O, Mn, S, Ca and Cl: H: | c_1 = 2 c_4 Na: | c_1 = 2 c_5 + 2 c_7 O: | c_1 + 4 c_2 + 2 c_3 = c_4 + 4 c_5 + 4 c_7 Mn: | c_2 = c_7 S: | c_2 = c_5 Ca: | c_3 = c_6 Cl: | 2 c_3 = 2 c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 4 c_2 = 1 c_3 = 1 c_4 = 2 c_5 = 1 c_6 = 1 c_7 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 4 NaOH + MnSO_4 + Ca(ClO)2 ⟶ 2 H_2O + Na_2SO_4 + CaCl_2 + Na2MnO4

Structures

 + + Ca(ClO)2 ⟶ + + + Na2MnO4
+ + Ca(ClO)2 ⟶ + + + Na2MnO4

Names

sodium hydroxide + manganese(II) sulfate + Ca(ClO)2 ⟶ water + sodium sulfate + calcium chloride + Na2MnO4
sodium hydroxide + manganese(II) sulfate + Ca(ClO)2 ⟶ water + sodium sulfate + calcium chloride + Na2MnO4

Equilibrium constant

Construct the equilibrium constant, K, expression for: NaOH + MnSO_4 + Ca(ClO)2 ⟶ H_2O + Na_2SO_4 + CaCl_2 + Na2MnO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 4 NaOH + MnSO_4 + Ca(ClO)2 ⟶ 2 H_2O + Na_2SO_4 + CaCl_2 + Na2MnO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i NaOH | 4 | -4 MnSO_4 | 1 | -1 Ca(ClO)2 | 1 | -1 H_2O | 2 | 2 Na_2SO_4 | 1 | 1 CaCl_2 | 1 | 1 Na2MnO4 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression NaOH | 4 | -4 | ([NaOH])^(-4) MnSO_4 | 1 | -1 | ([MnSO4])^(-1) Ca(ClO)2 | 1 | -1 | ([Ca(ClO)2])^(-1) H_2O | 2 | 2 | ([H2O])^2 Na_2SO_4 | 1 | 1 | [Na2SO4] CaCl_2 | 1 | 1 | [CaCl2] Na2MnO4 | 1 | 1 | [Na2MnO4] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([NaOH])^(-4) ([MnSO4])^(-1) ([Ca(ClO)2])^(-1) ([H2O])^2 [Na2SO4] [CaCl2] [Na2MnO4] = (([H2O])^2 [Na2SO4] [CaCl2] [Na2MnO4])/(([NaOH])^4 [MnSO4] [Ca(ClO)2])
Construct the equilibrium constant, K, expression for: NaOH + MnSO_4 + Ca(ClO)2 ⟶ H_2O + Na_2SO_4 + CaCl_2 + Na2MnO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 4 NaOH + MnSO_4 + Ca(ClO)2 ⟶ 2 H_2O + Na_2SO_4 + CaCl_2 + Na2MnO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i NaOH | 4 | -4 MnSO_4 | 1 | -1 Ca(ClO)2 | 1 | -1 H_2O | 2 | 2 Na_2SO_4 | 1 | 1 CaCl_2 | 1 | 1 Na2MnO4 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression NaOH | 4 | -4 | ([NaOH])^(-4) MnSO_4 | 1 | -1 | ([MnSO4])^(-1) Ca(ClO)2 | 1 | -1 | ([Ca(ClO)2])^(-1) H_2O | 2 | 2 | ([H2O])^2 Na_2SO_4 | 1 | 1 | [Na2SO4] CaCl_2 | 1 | 1 | [CaCl2] Na2MnO4 | 1 | 1 | [Na2MnO4] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([NaOH])^(-4) ([MnSO4])^(-1) ([Ca(ClO)2])^(-1) ([H2O])^2 [Na2SO4] [CaCl2] [Na2MnO4] = (([H2O])^2 [Na2SO4] [CaCl2] [Na2MnO4])/(([NaOH])^4 [MnSO4] [Ca(ClO)2])

Rate of reaction

Construct the rate of reaction expression for: NaOH + MnSO_4 + Ca(ClO)2 ⟶ H_2O + Na_2SO_4 + CaCl_2 + Na2MnO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 4 NaOH + MnSO_4 + Ca(ClO)2 ⟶ 2 H_2O + Na_2SO_4 + CaCl_2 + Na2MnO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i NaOH | 4 | -4 MnSO_4 | 1 | -1 Ca(ClO)2 | 1 | -1 H_2O | 2 | 2 Na_2SO_4 | 1 | 1 CaCl_2 | 1 | 1 Na2MnO4 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term NaOH | 4 | -4 | -1/4 (Δ[NaOH])/(Δt) MnSO_4 | 1 | -1 | -(Δ[MnSO4])/(Δt) Ca(ClO)2 | 1 | -1 | -(Δ[Ca(ClO)2])/(Δt) H_2O | 2 | 2 | 1/2 (Δ[H2O])/(Δt) Na_2SO_4 | 1 | 1 | (Δ[Na2SO4])/(Δt) CaCl_2 | 1 | 1 | (Δ[CaCl2])/(Δt) Na2MnO4 | 1 | 1 | (Δ[Na2MnO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/4 (Δ[NaOH])/(Δt) = -(Δ[MnSO4])/(Δt) = -(Δ[Ca(ClO)2])/(Δt) = 1/2 (Δ[H2O])/(Δt) = (Δ[Na2SO4])/(Δt) = (Δ[CaCl2])/(Δt) = (Δ[Na2MnO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: NaOH + MnSO_4 + Ca(ClO)2 ⟶ H_2O + Na_2SO_4 + CaCl_2 + Na2MnO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 4 NaOH + MnSO_4 + Ca(ClO)2 ⟶ 2 H_2O + Na_2SO_4 + CaCl_2 + Na2MnO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i NaOH | 4 | -4 MnSO_4 | 1 | -1 Ca(ClO)2 | 1 | -1 H_2O | 2 | 2 Na_2SO_4 | 1 | 1 CaCl_2 | 1 | 1 Na2MnO4 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term NaOH | 4 | -4 | -1/4 (Δ[NaOH])/(Δt) MnSO_4 | 1 | -1 | -(Δ[MnSO4])/(Δt) Ca(ClO)2 | 1 | -1 | -(Δ[Ca(ClO)2])/(Δt) H_2O | 2 | 2 | 1/2 (Δ[H2O])/(Δt) Na_2SO_4 | 1 | 1 | (Δ[Na2SO4])/(Δt) CaCl_2 | 1 | 1 | (Δ[CaCl2])/(Δt) Na2MnO4 | 1 | 1 | (Δ[Na2MnO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/4 (Δ[NaOH])/(Δt) = -(Δ[MnSO4])/(Δt) = -(Δ[Ca(ClO)2])/(Δt) = 1/2 (Δ[H2O])/(Δt) = (Δ[Na2SO4])/(Δt) = (Δ[CaCl2])/(Δt) = (Δ[Na2MnO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sodium hydroxide | manganese(II) sulfate | Ca(ClO)2 | water | sodium sulfate | calcium chloride | Na2MnO4 formula | NaOH | MnSO_4 | Ca(ClO)2 | H_2O | Na_2SO_4 | CaCl_2 | Na2MnO4 Hill formula | HNaO | MnSO_4 | CaCl2O2 | H_2O | Na_2O_4S | CaCl_2 | MnNa2O4 name | sodium hydroxide | manganese(II) sulfate | | water | sodium sulfate | calcium chloride |  IUPAC name | sodium hydroxide | manganese(+2) cation sulfate | | water | disodium sulfate | calcium dichloride |
| sodium hydroxide | manganese(II) sulfate | Ca(ClO)2 | water | sodium sulfate | calcium chloride | Na2MnO4 formula | NaOH | MnSO_4 | Ca(ClO)2 | H_2O | Na_2SO_4 | CaCl_2 | Na2MnO4 Hill formula | HNaO | MnSO_4 | CaCl2O2 | H_2O | Na_2O_4S | CaCl_2 | MnNa2O4 name | sodium hydroxide | manganese(II) sulfate | | water | sodium sulfate | calcium chloride | IUPAC name | sodium hydroxide | manganese(+2) cation sulfate | | water | disodium sulfate | calcium dichloride |

Substance properties

 | sodium hydroxide | manganese(II) sulfate | Ca(ClO)2 | water | sodium sulfate | calcium chloride | Na2MnO4 molar mass | 39.997 g/mol | 150.99 g/mol | 143 g/mol | 18.015 g/mol | 142.04 g/mol | 111 g/mol | 164.91 g/mol phase | solid (at STP) | solid (at STP) | | liquid (at STP) | solid (at STP) | solid (at STP) |  melting point | 323 °C | 710 °C | | 0 °C | 884 °C | 772 °C |  boiling point | 1390 °C | | | 99.9839 °C | 1429 °C | |  density | 2.13 g/cm^3 | 3.25 g/cm^3 | | 1 g/cm^3 | 2.68 g/cm^3 | 2.15 g/cm^3 |  solubility in water | soluble | soluble | | | soluble | soluble |  surface tension | 0.07435 N/m | | | 0.0728 N/m | | |  dynamic viscosity | 0.004 Pa s (at 350 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | |  odor | | | | odorless | | |
| sodium hydroxide | manganese(II) sulfate | Ca(ClO)2 | water | sodium sulfate | calcium chloride | Na2MnO4 molar mass | 39.997 g/mol | 150.99 g/mol | 143 g/mol | 18.015 g/mol | 142.04 g/mol | 111 g/mol | 164.91 g/mol phase | solid (at STP) | solid (at STP) | | liquid (at STP) | solid (at STP) | solid (at STP) | melting point | 323 °C | 710 °C | | 0 °C | 884 °C | 772 °C | boiling point | 1390 °C | | | 99.9839 °C | 1429 °C | | density | 2.13 g/cm^3 | 3.25 g/cm^3 | | 1 g/cm^3 | 2.68 g/cm^3 | 2.15 g/cm^3 | solubility in water | soluble | soluble | | | soluble | soluble | surface tension | 0.07435 N/m | | | 0.0728 N/m | | | dynamic viscosity | 0.004 Pa s (at 350 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | | odor | | | | odorless | | |

Units