Search

Cl2 + FeSO4 = FeCl3 + Fe2(SO4)3

Input interpretation

Cl_2 chlorine + FeSO_4 duretter ⟶ FeCl_3 iron(III) chloride + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate
Cl_2 chlorine + FeSO_4 duretter ⟶ FeCl_3 iron(III) chloride + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate

Balanced equation

Balance the chemical equation algebraically: Cl_2 + FeSO_4 ⟶ FeCl_3 + Fe_2(SO_4)_3·xH_2O Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Cl_2 + c_2 FeSO_4 ⟶ c_3 FeCl_3 + c_4 Fe_2(SO_4)_3·xH_2O Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, Fe, O and S: Cl: | 2 c_1 = 3 c_3 Fe: | c_2 = c_3 + 2 c_4 O: | 4 c_2 = 12 c_4 S: | c_2 = 3 c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3/2 c_2 = 3 c_3 = 1 c_4 = 1 Multiply by the least common denominator, 2, to eliminate fractional coefficients: c_1 = 3 c_2 = 6 c_3 = 2 c_4 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 3 Cl_2 + 6 FeSO_4 ⟶ 2 FeCl_3 + 2 Fe_2(SO_4)_3·xH_2O
Balance the chemical equation algebraically: Cl_2 + FeSO_4 ⟶ FeCl_3 + Fe_2(SO_4)_3·xH_2O Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Cl_2 + c_2 FeSO_4 ⟶ c_3 FeCl_3 + c_4 Fe_2(SO_4)_3·xH_2O Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, Fe, O and S: Cl: | 2 c_1 = 3 c_3 Fe: | c_2 = c_3 + 2 c_4 O: | 4 c_2 = 12 c_4 S: | c_2 = 3 c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3/2 c_2 = 3 c_3 = 1 c_4 = 1 Multiply by the least common denominator, 2, to eliminate fractional coefficients: c_1 = 3 c_2 = 6 c_3 = 2 c_4 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 3 Cl_2 + 6 FeSO_4 ⟶ 2 FeCl_3 + 2 Fe_2(SO_4)_3·xH_2O

Structures

 + ⟶ +
+ ⟶ +

Names

chlorine + duretter ⟶ iron(III) chloride + iron(III) sulfate hydrate
chlorine + duretter ⟶ iron(III) chloride + iron(III) sulfate hydrate

Equilibrium constant

Construct the equilibrium constant, K, expression for: Cl_2 + FeSO_4 ⟶ FeCl_3 + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 Cl_2 + 6 FeSO_4 ⟶ 2 FeCl_3 + 2 Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Cl_2 | 3 | -3 FeSO_4 | 6 | -6 FeCl_3 | 2 | 2 Fe_2(SO_4)_3·xH_2O | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Cl_2 | 3 | -3 | ([Cl2])^(-3) FeSO_4 | 6 | -6 | ([FeSO4])^(-6) FeCl_3 | 2 | 2 | ([FeCl3])^2 Fe_2(SO_4)_3·xH_2O | 2 | 2 | ([Fe2(SO4)3·xH2O])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([Cl2])^(-3) ([FeSO4])^(-6) ([FeCl3])^2 ([Fe2(SO4)3·xH2O])^2 = (([FeCl3])^2 ([Fe2(SO4)3·xH2O])^2)/(([Cl2])^3 ([FeSO4])^6)
Construct the equilibrium constant, K, expression for: Cl_2 + FeSO_4 ⟶ FeCl_3 + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 Cl_2 + 6 FeSO_4 ⟶ 2 FeCl_3 + 2 Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Cl_2 | 3 | -3 FeSO_4 | 6 | -6 FeCl_3 | 2 | 2 Fe_2(SO_4)_3·xH_2O | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Cl_2 | 3 | -3 | ([Cl2])^(-3) FeSO_4 | 6 | -6 | ([FeSO4])^(-6) FeCl_3 | 2 | 2 | ([FeCl3])^2 Fe_2(SO_4)_3·xH_2O | 2 | 2 | ([Fe2(SO4)3·xH2O])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([Cl2])^(-3) ([FeSO4])^(-6) ([FeCl3])^2 ([Fe2(SO4)3·xH2O])^2 = (([FeCl3])^2 ([Fe2(SO4)3·xH2O])^2)/(([Cl2])^3 ([FeSO4])^6)

Rate of reaction

Construct the rate of reaction expression for: Cl_2 + FeSO_4 ⟶ FeCl_3 + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 Cl_2 + 6 FeSO_4 ⟶ 2 FeCl_3 + 2 Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Cl_2 | 3 | -3 FeSO_4 | 6 | -6 FeCl_3 | 2 | 2 Fe_2(SO_4)_3·xH_2O | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Cl_2 | 3 | -3 | -1/3 (Δ[Cl2])/(Δt) FeSO_4 | 6 | -6 | -1/6 (Δ[FeSO4])/(Δt) FeCl_3 | 2 | 2 | 1/2 (Δ[FeCl3])/(Δt) Fe_2(SO_4)_3·xH_2O | 2 | 2 | 1/2 (Δ[Fe2(SO4)3·xH2O])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/3 (Δ[Cl2])/(Δt) = -1/6 (Δ[FeSO4])/(Δt) = 1/2 (Δ[FeCl3])/(Δt) = 1/2 (Δ[Fe2(SO4)3·xH2O])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: Cl_2 + FeSO_4 ⟶ FeCl_3 + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 Cl_2 + 6 FeSO_4 ⟶ 2 FeCl_3 + 2 Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Cl_2 | 3 | -3 FeSO_4 | 6 | -6 FeCl_3 | 2 | 2 Fe_2(SO_4)_3·xH_2O | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Cl_2 | 3 | -3 | -1/3 (Δ[Cl2])/(Δt) FeSO_4 | 6 | -6 | -1/6 (Δ[FeSO4])/(Δt) FeCl_3 | 2 | 2 | 1/2 (Δ[FeCl3])/(Δt) Fe_2(SO_4)_3·xH_2O | 2 | 2 | 1/2 (Δ[Fe2(SO4)3·xH2O])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/3 (Δ[Cl2])/(Δt) = -1/6 (Δ[FeSO4])/(Δt) = 1/2 (Δ[FeCl3])/(Δt) = 1/2 (Δ[Fe2(SO4)3·xH2O])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | chlorine | duretter | iron(III) chloride | iron(III) sulfate hydrate formula | Cl_2 | FeSO_4 | FeCl_3 | Fe_2(SO_4)_3·xH_2O Hill formula | Cl_2 | FeO_4S | Cl_3Fe | Fe_2O_12S_3 name | chlorine | duretter | iron(III) chloride | iron(III) sulfate hydrate IUPAC name | molecular chlorine | iron(+2) cation sulfate | trichloroiron | diferric trisulfate
| chlorine | duretter | iron(III) chloride | iron(III) sulfate hydrate formula | Cl_2 | FeSO_4 | FeCl_3 | Fe_2(SO_4)_3·xH_2O Hill formula | Cl_2 | FeO_4S | Cl_3Fe | Fe_2O_12S_3 name | chlorine | duretter | iron(III) chloride | iron(III) sulfate hydrate IUPAC name | molecular chlorine | iron(+2) cation sulfate | trichloroiron | diferric trisulfate

Substance properties

 | chlorine | duretter | iron(III) chloride | iron(III) sulfate hydrate molar mass | 70.9 g/mol | 151.9 g/mol | 162.2 g/mol | 399.9 g/mol phase | gas (at STP) | | solid (at STP) |  melting point | -101 °C | | 304 °C |  boiling point | -34 °C | | |  density | 0.003214 g/cm^3 (at 0 °C) | 2.841 g/cm^3 | |  solubility in water | | | | slightly soluble
| chlorine | duretter | iron(III) chloride | iron(III) sulfate hydrate molar mass | 70.9 g/mol | 151.9 g/mol | 162.2 g/mol | 399.9 g/mol phase | gas (at STP) | | solid (at STP) | melting point | -101 °C | | 304 °C | boiling point | -34 °C | | | density | 0.003214 g/cm^3 (at 0 °C) | 2.841 g/cm^3 | | solubility in water | | | | slightly soluble

Units