Search

Bell Coleman cycle

Input interpretation

Bell Coleman cycle
Bell Coleman cycle

Equation

η_th = 1 - (P_l/P_h)^((γ - 1)/γ) |  η_th | thermal efficiency P_h | high pressure P_l | low pressure γ | heat capacity ratio (assuming an ideal gas)
η_th = 1 - (P_l/P_h)^((γ - 1)/γ) | η_th | thermal efficiency P_h | high pressure P_l | low pressure γ | heat capacity ratio (assuming an ideal gas)

Input values

high pressure | 500000 Pa (pascals) low pressure | 100000 Pa (pascals) heat capacity ratio | 5/3
high pressure | 500000 Pa (pascals) low pressure | 100000 Pa (pascals) heat capacity ratio | 5/3

Results

thermal efficiency | 0.4747 = 47.47%
thermal efficiency | 0.4747 = 47.47%

Possible intermediate steps

Calculate the thermal efficiency using the following information: known variables | |  P_h | high pressure | 500000 Pa P_l | low pressure | 100000 Pa γ | heat capacity ratio | 5/3 Convert known variables into appropriate units using the following: 1 Pa = 1000 g/(m s^2): 1 Pa = 1000 g/(m s^2): known variables | |  P_h | high pressure | 5×10^8 g/(m s^2) P_l | low pressure | 1×10^8 g/(m s^2) γ | heat capacity ratio | 5/3 The relevant equation that relates thermal efficiency (η_th), high pressure (P_h), low pressure (P_l), and heat capacity ratio (γ) is: η_th = 1 - (P_l/P_h)^((γ - 1)/γ) Substitute known variables into the equation: known variables | |  P_h | high pressure | 5×10^8 g/(m s^2) P_l | low pressure | 1×10^8 g/(m s^2) γ | heat capacity ratio | 5/3 | : η_th = 1 - ((1×10^8 g/(m s^2))/(5×10^8 g/(m s^2)))^((5/3 - 1)/5/3) Cancel the units in 1 - ((1×10^8 g/(m s^2))/(5×10^8 g/(m s^2)))^((5/3 - 1)/5/3): η_th = 1 - ((1×10^8)/(5×10^8))^((5/3 - 1)/5/3) Evaluate 1 - ((1×10^8)/(5×10^8))^((5/3 - 1)/5/3): Answer: |   | η_th = 0.4747
Calculate the thermal efficiency using the following information: known variables | | P_h | high pressure | 500000 Pa P_l | low pressure | 100000 Pa γ | heat capacity ratio | 5/3 Convert known variables into appropriate units using the following: 1 Pa = 1000 g/(m s^2): 1 Pa = 1000 g/(m s^2): known variables | | P_h | high pressure | 5×10^8 g/(m s^2) P_l | low pressure | 1×10^8 g/(m s^2) γ | heat capacity ratio | 5/3 The relevant equation that relates thermal efficiency (η_th), high pressure (P_h), low pressure (P_l), and heat capacity ratio (γ) is: η_th = 1 - (P_l/P_h)^((γ - 1)/γ) Substitute known variables into the equation: known variables | | P_h | high pressure | 5×10^8 g/(m s^2) P_l | low pressure | 1×10^8 g/(m s^2) γ | heat capacity ratio | 5/3 | : η_th = 1 - ((1×10^8 g/(m s^2))/(5×10^8 g/(m s^2)))^((5/3 - 1)/5/3) Cancel the units in 1 - ((1×10^8 g/(m s^2))/(5×10^8 g/(m s^2)))^((5/3 - 1)/5/3): η_th = 1 - ((1×10^8)/(5×10^8))^((5/3 - 1)/5/3) Evaluate 1 - ((1×10^8)/(5×10^8))^((5/3 - 1)/5/3): Answer: | | η_th = 0.4747

Pressure vs. volume

Pressure vs. volume
Pressure vs. volume

Temperature vs. entropy

Temperature vs. entropy
Temperature vs. entropy

Possible time evolution

Possible time evolution
Possible time evolution
Possible time evolution
Possible time evolution
Possible time evolution
Possible time evolution
Possible time evolution
Possible time evolution