Input interpretation
H_2SO_4 sulfuric acid + KIO_3 potassium iodate + NaHSO_3 sodium bisulfite ⟶ H_2O water + K_2SO_4 potassium sulfate + I_2 iodine + NaHSO_4 sodium bisulfate
Balanced equation
Balance the chemical equation algebraically: H_2SO_4 + KIO_3 + NaHSO_3 ⟶ H_2O + K_2SO_4 + I_2 + NaHSO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 KIO_3 + c_3 NaHSO_3 ⟶ c_4 H_2O + c_5 K_2SO_4 + c_6 I_2 + c_7 NaHSO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, I, K and Na: H: | 2 c_1 + c_3 = 2 c_4 + c_7 O: | 4 c_1 + 3 c_2 + 3 c_3 = c_4 + 4 c_5 + 4 c_7 S: | c_1 + c_3 = c_5 + c_7 I: | c_2 = 2 c_6 K: | c_2 = 2 c_5 Na: | c_3 = c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 2 c_3 = 5 c_4 = 1 c_5 = 1 c_6 = 1 c_7 = 5 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | H_2SO_4 + 2 KIO_3 + 5 NaHSO_3 ⟶ H_2O + K_2SO_4 + I_2 + 5 NaHSO_4
Structures
+ + ⟶ + + +
Names
sulfuric acid + potassium iodate + sodium bisulfite ⟶ water + potassium sulfate + iodine + sodium bisulfate
Equilibrium constant
Construct the equilibrium constant, K, expression for: H_2SO_4 + KIO_3 + NaHSO_3 ⟶ H_2O + K_2SO_4 + I_2 + NaHSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: H_2SO_4 + 2 KIO_3 + 5 NaHSO_3 ⟶ H_2O + K_2SO_4 + I_2 + 5 NaHSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 KIO_3 | 2 | -2 NaHSO_3 | 5 | -5 H_2O | 1 | 1 K_2SO_4 | 1 | 1 I_2 | 1 | 1 NaHSO_4 | 5 | 5 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 1 | -1 | ([H2SO4])^(-1) KIO_3 | 2 | -2 | ([KIO3])^(-2) NaHSO_3 | 5 | -5 | ([NaHSO3])^(-5) H_2O | 1 | 1 | [H2O] K_2SO_4 | 1 | 1 | [K2SO4] I_2 | 1 | 1 | [I2] NaHSO_4 | 5 | 5 | ([NaHSO4])^5 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-1) ([KIO3])^(-2) ([NaHSO3])^(-5) [H2O] [K2SO4] [I2] ([NaHSO4])^5 = ([H2O] [K2SO4] [I2] ([NaHSO4])^5)/([H2SO4] ([KIO3])^2 ([NaHSO3])^5)
Rate of reaction
Construct the rate of reaction expression for: H_2SO_4 + KIO_3 + NaHSO_3 ⟶ H_2O + K_2SO_4 + I_2 + NaHSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: H_2SO_4 + 2 KIO_3 + 5 NaHSO_3 ⟶ H_2O + K_2SO_4 + I_2 + 5 NaHSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 KIO_3 | 2 | -2 NaHSO_3 | 5 | -5 H_2O | 1 | 1 K_2SO_4 | 1 | 1 I_2 | 1 | 1 NaHSO_4 | 5 | 5 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 1 | -1 | -(Δ[H2SO4])/(Δt) KIO_3 | 2 | -2 | -1/2 (Δ[KIO3])/(Δt) NaHSO_3 | 5 | -5 | -1/5 (Δ[NaHSO3])/(Δt) H_2O | 1 | 1 | (Δ[H2O])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) I_2 | 1 | 1 | (Δ[I2])/(Δt) NaHSO_4 | 5 | 5 | 1/5 (Δ[NaHSO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[H2SO4])/(Δt) = -1/2 (Δ[KIO3])/(Δt) = -1/5 (Δ[NaHSO3])/(Δt) = (Δ[H2O])/(Δt) = (Δ[K2SO4])/(Δt) = (Δ[I2])/(Δt) = 1/5 (Δ[NaHSO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Chemical names and formulas
| sulfuric acid | potassium iodate | sodium bisulfite | water | potassium sulfate | iodine | sodium bisulfate formula | H_2SO_4 | KIO_3 | NaHSO_3 | H_2O | K_2SO_4 | I_2 | NaHSO_4 Hill formula | H_2O_4S | IKO_3 | HNaO_3S | H_2O | K_2O_4S | I_2 | HNaO_4S name | sulfuric acid | potassium iodate | sodium bisulfite | water | potassium sulfate | iodine | sodium bisulfate IUPAC name | sulfuric acid | potassium iodate | | water | dipotassium sulfate | molecular iodine |
Substance properties
| sulfuric acid | potassium iodate | sodium bisulfite | water | potassium sulfate | iodine | sodium bisulfate molar mass | 98.07 g/mol | 214 g/mol | 104.1 g/mol | 18.015 g/mol | 174.25 g/mol | 253.80894 g/mol | 120.1 g/mol phase | liquid (at STP) | solid (at STP) | solid (at STP) | liquid (at STP) | | solid (at STP) | solid (at STP) melting point | 10.371 °C | 560 °C | 150 °C | 0 °C | | 113 °C | 181.85 °C boiling point | 279.6 °C | | | 99.9839 °C | | 184 °C | density | 1.8305 g/cm^3 | 1.005 g/cm^3 | 1.36 g/cm^3 | 1 g/cm^3 | | 4.94 g/cm^3 | 1.8 g/cm^3 solubility in water | very soluble | | | | soluble | | surface tension | 0.0735 N/m | | | 0.0728 N/m | | | dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | 0.00227 Pa s (at 116 °C) | odor | odorless | | | odorless | | |
Units