Input interpretation
H_2O water + KI potassium iodide + Cr_2(SO_4)_3 chromium sulfate + KIO_3 potassium iodate ⟶ K_2SO_4 potassium sulfate + I_2 iodine + Cr(OH)3
Balanced equation
Balance the chemical equation algebraically: H_2O + KI + Cr_2(SO_4)_3 + KIO_3 ⟶ K_2SO_4 + I_2 + Cr(OH)3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 KI + c_3 Cr_2(SO_4)_3 + c_4 KIO_3 ⟶ c_5 K_2SO_4 + c_6 I_2 + c_7 Cr(OH)3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, I, K, Cr and S: H: | 2 c_1 = 3 c_7 O: | c_1 + 12 c_3 + 3 c_4 = 4 c_5 + 3 c_7 I: | c_2 + c_4 = 2 c_6 K: | c_2 + c_4 = 2 c_5 Cr: | 2 c_3 = c_7 S: | 3 c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 5 c_3 = 1 c_4 = 1 c_5 = 3 c_6 = 3 c_7 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 3 H_2O + 5 KI + Cr_2(SO_4)_3 + KIO_3 ⟶ 3 K_2SO_4 + 3 I_2 + 2 Cr(OH)3
Structures
+ + + ⟶ + + Cr(OH)3
Names
water + potassium iodide + chromium sulfate + potassium iodate ⟶ potassium sulfate + iodine + Cr(OH)3
Equilibrium constant
Construct the equilibrium constant, K, expression for: H_2O + KI + Cr_2(SO_4)_3 + KIO_3 ⟶ K_2SO_4 + I_2 + Cr(OH)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 H_2O + 5 KI + Cr_2(SO_4)_3 + KIO_3 ⟶ 3 K_2SO_4 + 3 I_2 + 2 Cr(OH)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 3 | -3 KI | 5 | -5 Cr_2(SO_4)_3 | 1 | -1 KIO_3 | 1 | -1 K_2SO_4 | 3 | 3 I_2 | 3 | 3 Cr(OH)3 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 3 | -3 | ([H2O])^(-3) KI | 5 | -5 | ([KI])^(-5) Cr_2(SO_4)_3 | 1 | -1 | ([Cr2(SO4)3])^(-1) KIO_3 | 1 | -1 | ([KIO3])^(-1) K_2SO_4 | 3 | 3 | ([K2SO4])^3 I_2 | 3 | 3 | ([I2])^3 Cr(OH)3 | 2 | 2 | ([Cr(OH)3])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2O])^(-3) ([KI])^(-5) ([Cr2(SO4)3])^(-1) ([KIO3])^(-1) ([K2SO4])^3 ([I2])^3 ([Cr(OH)3])^2 = (([K2SO4])^3 ([I2])^3 ([Cr(OH)3])^2)/(([H2O])^3 ([KI])^5 [Cr2(SO4)3] [KIO3])
Rate of reaction
Construct the rate of reaction expression for: H_2O + KI + Cr_2(SO_4)_3 + KIO_3 ⟶ K_2SO_4 + I_2 + Cr(OH)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 H_2O + 5 KI + Cr_2(SO_4)_3 + KIO_3 ⟶ 3 K_2SO_4 + 3 I_2 + 2 Cr(OH)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 3 | -3 KI | 5 | -5 Cr_2(SO_4)_3 | 1 | -1 KIO_3 | 1 | -1 K_2SO_4 | 3 | 3 I_2 | 3 | 3 Cr(OH)3 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 3 | -3 | -1/3 (Δ[H2O])/(Δt) KI | 5 | -5 | -1/5 (Δ[KI])/(Δt) Cr_2(SO_4)_3 | 1 | -1 | -(Δ[Cr2(SO4)3])/(Δt) KIO_3 | 1 | -1 | -(Δ[KIO3])/(Δt) K_2SO_4 | 3 | 3 | 1/3 (Δ[K2SO4])/(Δt) I_2 | 3 | 3 | 1/3 (Δ[I2])/(Δt) Cr(OH)3 | 2 | 2 | 1/2 (Δ[Cr(OH)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/3 (Δ[H2O])/(Δt) = -1/5 (Δ[KI])/(Δt) = -(Δ[Cr2(SO4)3])/(Δt) = -(Δ[KIO3])/(Δt) = 1/3 (Δ[K2SO4])/(Δt) = 1/3 (Δ[I2])/(Δt) = 1/2 (Δ[Cr(OH)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Chemical names and formulas
| water | potassium iodide | chromium sulfate | potassium iodate | potassium sulfate | iodine | Cr(OH)3 formula | H_2O | KI | Cr_2(SO_4)_3 | KIO_3 | K_2SO_4 | I_2 | Cr(OH)3 Hill formula | H_2O | IK | Cr_2O_12S_3 | IKO_3 | K_2O_4S | I_2 | H3CrO3 name | water | potassium iodide | chromium sulfate | potassium iodate | potassium sulfate | iodine | IUPAC name | water | potassium iodide | chromium(+3) cation trisulfate | potassium iodate | dipotassium sulfate | molecular iodine |
Substance properties
| water | potassium iodide | chromium sulfate | potassium iodate | potassium sulfate | iodine | Cr(OH)3 molar mass | 18.015 g/mol | 166.0028 g/mol | 392.2 g/mol | 214 g/mol | 174.25 g/mol | 253.80894 g/mol | 103.02 g/mol phase | liquid (at STP) | solid (at STP) | liquid (at STP) | solid (at STP) | | solid (at STP) | melting point | 0 °C | 681 °C | | 560 °C | | 113 °C | boiling point | 99.9839 °C | 1330 °C | 330 °C | | | 184 °C | density | 1 g/cm^3 | 3.123 g/cm^3 | 1.84 g/cm^3 | 1.005 g/cm^3 | | 4.94 g/cm^3 | solubility in water | | | | | soluble | | surface tension | 0.0728 N/m | | | | | | dynamic viscosity | 8.9×10^-4 Pa s (at 25 °C) | 0.0010227 Pa s (at 732.9 °C) | | | | 0.00227 Pa s (at 116 °C) | odor | odorless | | odorless | | | |
Units