Search

HNO3 + CuFeS2 = H2O + H2SO4 + NO + Fe(NO3)3 + Cu(NO3)3

Input interpretation

HNO_3 nitric acid + CuFeS_2 copper(II) ferrous sulfide ⟶ H_2O water + H_2SO_4 sulfuric acid + NO nitric oxide + Fe(NO_3)_3 ferric nitrate + Cu(NO3)3
HNO_3 nitric acid + CuFeS_2 copper(II) ferrous sulfide ⟶ H_2O water + H_2SO_4 sulfuric acid + NO nitric oxide + Fe(NO_3)_3 ferric nitrate + Cu(NO3)3

Balanced equation

Balance the chemical equation algebraically: HNO_3 + CuFeS_2 ⟶ H_2O + H_2SO_4 + NO + Fe(NO_3)_3 + Cu(NO3)3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 HNO_3 + c_2 CuFeS_2 ⟶ c_3 H_2O + c_4 H_2SO_4 + c_5 NO + c_6 Fe(NO_3)_3 + c_7 Cu(NO3)3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, N, O, Cu, Fe and S: H: | c_1 = 2 c_3 + 2 c_4 N: | c_1 = c_5 + 3 c_6 + 3 c_7 O: | 3 c_1 = c_3 + 4 c_4 + c_5 + 9 c_6 + 9 c_7 Cu: | c_2 = c_7 Fe: | c_2 = c_6 S: | 2 c_2 = c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 12 c_2 = 1 c_3 = 4 c_4 = 2 c_5 = 6 c_6 = 1 c_7 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 12 HNO_3 + CuFeS_2 ⟶ 4 H_2O + 2 H_2SO_4 + 6 NO + Fe(NO_3)_3 + Cu(NO3)3
Balance the chemical equation algebraically: HNO_3 + CuFeS_2 ⟶ H_2O + H_2SO_4 + NO + Fe(NO_3)_3 + Cu(NO3)3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 HNO_3 + c_2 CuFeS_2 ⟶ c_3 H_2O + c_4 H_2SO_4 + c_5 NO + c_6 Fe(NO_3)_3 + c_7 Cu(NO3)3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, N, O, Cu, Fe and S: H: | c_1 = 2 c_3 + 2 c_4 N: | c_1 = c_5 + 3 c_6 + 3 c_7 O: | 3 c_1 = c_3 + 4 c_4 + c_5 + 9 c_6 + 9 c_7 Cu: | c_2 = c_7 Fe: | c_2 = c_6 S: | 2 c_2 = c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 12 c_2 = 1 c_3 = 4 c_4 = 2 c_5 = 6 c_6 = 1 c_7 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 12 HNO_3 + CuFeS_2 ⟶ 4 H_2O + 2 H_2SO_4 + 6 NO + Fe(NO_3)_3 + Cu(NO3)3

Structures

 + CuFeS_2 ⟶ + + + + Cu(NO3)3
+ CuFeS_2 ⟶ + + + + Cu(NO3)3

Names

nitric acid + copper(II) ferrous sulfide ⟶ water + sulfuric acid + nitric oxide + ferric nitrate + Cu(NO3)3
nitric acid + copper(II) ferrous sulfide ⟶ water + sulfuric acid + nitric oxide + ferric nitrate + Cu(NO3)3

Equilibrium constant

Construct the equilibrium constant, K, expression for: HNO_3 + CuFeS_2 ⟶ H_2O + H_2SO_4 + NO + Fe(NO_3)_3 + Cu(NO3)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 12 HNO_3 + CuFeS_2 ⟶ 4 H_2O + 2 H_2SO_4 + 6 NO + Fe(NO_3)_3 + Cu(NO3)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HNO_3 | 12 | -12 CuFeS_2 | 1 | -1 H_2O | 4 | 4 H_2SO_4 | 2 | 2 NO | 6 | 6 Fe(NO_3)_3 | 1 | 1 Cu(NO3)3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression HNO_3 | 12 | -12 | ([HNO3])^(-12) CuFeS_2 | 1 | -1 | ([CuFeS2])^(-1) H_2O | 4 | 4 | ([H2O])^4 H_2SO_4 | 2 | 2 | ([H2SO4])^2 NO | 6 | 6 | ([NO])^6 Fe(NO_3)_3 | 1 | 1 | [Fe(NO3)3] Cu(NO3)3 | 1 | 1 | [Cu(NO3)3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([HNO3])^(-12) ([CuFeS2])^(-1) ([H2O])^4 ([H2SO4])^2 ([NO])^6 [Fe(NO3)3] [Cu(NO3)3] = (([H2O])^4 ([H2SO4])^2 ([NO])^6 [Fe(NO3)3] [Cu(NO3)3])/(([HNO3])^12 [CuFeS2])
Construct the equilibrium constant, K, expression for: HNO_3 + CuFeS_2 ⟶ H_2O + H_2SO_4 + NO + Fe(NO_3)_3 + Cu(NO3)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 12 HNO_3 + CuFeS_2 ⟶ 4 H_2O + 2 H_2SO_4 + 6 NO + Fe(NO_3)_3 + Cu(NO3)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HNO_3 | 12 | -12 CuFeS_2 | 1 | -1 H_2O | 4 | 4 H_2SO_4 | 2 | 2 NO | 6 | 6 Fe(NO_3)_3 | 1 | 1 Cu(NO3)3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression HNO_3 | 12 | -12 | ([HNO3])^(-12) CuFeS_2 | 1 | -1 | ([CuFeS2])^(-1) H_2O | 4 | 4 | ([H2O])^4 H_2SO_4 | 2 | 2 | ([H2SO4])^2 NO | 6 | 6 | ([NO])^6 Fe(NO_3)_3 | 1 | 1 | [Fe(NO3)3] Cu(NO3)3 | 1 | 1 | [Cu(NO3)3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([HNO3])^(-12) ([CuFeS2])^(-1) ([H2O])^4 ([H2SO4])^2 ([NO])^6 [Fe(NO3)3] [Cu(NO3)3] = (([H2O])^4 ([H2SO4])^2 ([NO])^6 [Fe(NO3)3] [Cu(NO3)3])/(([HNO3])^12 [CuFeS2])

Rate of reaction

Construct the rate of reaction expression for: HNO_3 + CuFeS_2 ⟶ H_2O + H_2SO_4 + NO + Fe(NO_3)_3 + Cu(NO3)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 12 HNO_3 + CuFeS_2 ⟶ 4 H_2O + 2 H_2SO_4 + 6 NO + Fe(NO_3)_3 + Cu(NO3)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HNO_3 | 12 | -12 CuFeS_2 | 1 | -1 H_2O | 4 | 4 H_2SO_4 | 2 | 2 NO | 6 | 6 Fe(NO_3)_3 | 1 | 1 Cu(NO3)3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term HNO_3 | 12 | -12 | -1/12 (Δ[HNO3])/(Δt) CuFeS_2 | 1 | -1 | -(Δ[CuFeS2])/(Δt) H_2O | 4 | 4 | 1/4 (Δ[H2O])/(Δt) H_2SO_4 | 2 | 2 | 1/2 (Δ[H2SO4])/(Δt) NO | 6 | 6 | 1/6 (Δ[NO])/(Δt) Fe(NO_3)_3 | 1 | 1 | (Δ[Fe(NO3)3])/(Δt) Cu(NO3)3 | 1 | 1 | (Δ[Cu(NO3)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/12 (Δ[HNO3])/(Δt) = -(Δ[CuFeS2])/(Δt) = 1/4 (Δ[H2O])/(Δt) = 1/2 (Δ[H2SO4])/(Δt) = 1/6 (Δ[NO])/(Δt) = (Δ[Fe(NO3)3])/(Δt) = (Δ[Cu(NO3)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: HNO_3 + CuFeS_2 ⟶ H_2O + H_2SO_4 + NO + Fe(NO_3)_3 + Cu(NO3)3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 12 HNO_3 + CuFeS_2 ⟶ 4 H_2O + 2 H_2SO_4 + 6 NO + Fe(NO_3)_3 + Cu(NO3)3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i HNO_3 | 12 | -12 CuFeS_2 | 1 | -1 H_2O | 4 | 4 H_2SO_4 | 2 | 2 NO | 6 | 6 Fe(NO_3)_3 | 1 | 1 Cu(NO3)3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term HNO_3 | 12 | -12 | -1/12 (Δ[HNO3])/(Δt) CuFeS_2 | 1 | -1 | -(Δ[CuFeS2])/(Δt) H_2O | 4 | 4 | 1/4 (Δ[H2O])/(Δt) H_2SO_4 | 2 | 2 | 1/2 (Δ[H2SO4])/(Δt) NO | 6 | 6 | 1/6 (Δ[NO])/(Δt) Fe(NO_3)_3 | 1 | 1 | (Δ[Fe(NO3)3])/(Δt) Cu(NO3)3 | 1 | 1 | (Δ[Cu(NO3)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/12 (Δ[HNO3])/(Δt) = -(Δ[CuFeS2])/(Δt) = 1/4 (Δ[H2O])/(Δt) = 1/2 (Δ[H2SO4])/(Δt) = 1/6 (Δ[NO])/(Δt) = (Δ[Fe(NO3)3])/(Δt) = (Δ[Cu(NO3)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | nitric acid | copper(II) ferrous sulfide | water | sulfuric acid | nitric oxide | ferric nitrate | Cu(NO3)3 formula | HNO_3 | CuFeS_2 | H_2O | H_2SO_4 | NO | Fe(NO_3)_3 | Cu(NO3)3 Hill formula | HNO_3 | CuFeS_2 | H_2O | H_2O_4S | NO | FeN_3O_9 | CuN3O9 name | nitric acid | copper(II) ferrous sulfide | water | sulfuric acid | nitric oxide | ferric nitrate |  IUPAC name | nitric acid | | water | sulfuric acid | nitric oxide | iron(+3) cation trinitrate |
| nitric acid | copper(II) ferrous sulfide | water | sulfuric acid | nitric oxide | ferric nitrate | Cu(NO3)3 formula | HNO_3 | CuFeS_2 | H_2O | H_2SO_4 | NO | Fe(NO_3)_3 | Cu(NO3)3 Hill formula | HNO_3 | CuFeS_2 | H_2O | H_2O_4S | NO | FeN_3O_9 | CuN3O9 name | nitric acid | copper(II) ferrous sulfide | water | sulfuric acid | nitric oxide | ferric nitrate | IUPAC name | nitric acid | | water | sulfuric acid | nitric oxide | iron(+3) cation trinitrate |