Input interpretation
H_2SO_4 sulfuric acid + FeSO_4 duretter + Na_2O_2 sodium peroxide ⟶ H_2O water + Na_2SO_4 sodium sulfate + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate
Balanced equation
Balance the chemical equation algebraically: H_2SO_4 + FeSO_4 + Na_2O_2 ⟶ H_2O + Na_2SO_4 + Fe_2(SO_4)_3·xH_2O Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 FeSO_4 + c_3 Na_2O_2 ⟶ c_4 H_2O + c_5 Na_2SO_4 + c_6 Fe_2(SO_4)_3·xH_2O Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Fe and Na: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 4 c_2 + 2 c_3 = c_4 + 4 c_5 + 12 c_6 S: | c_1 + c_2 = c_5 + 3 c_6 Fe: | c_2 = 2 c_6 Na: | 2 c_3 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 2 c_2 = 2 c_3 = 1 c_4 = 2 c_5 = 1 c_6 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 2 H_2SO_4 + 2 FeSO_4 + Na_2O_2 ⟶ 2 H_2O + Na_2SO_4 + Fe_2(SO_4)_3·xH_2O
Structures
+ + ⟶ + +
Names
sulfuric acid + duretter + sodium peroxide ⟶ water + sodium sulfate + iron(III) sulfate hydrate
Equilibrium constant
Construct the equilibrium constant, K, expression for: H_2SO_4 + FeSO_4 + Na_2O_2 ⟶ H_2O + Na_2SO_4 + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 2 H_2SO_4 + 2 FeSO_4 + Na_2O_2 ⟶ 2 H_2O + Na_2SO_4 + Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 2 | -2 FeSO_4 | 2 | -2 Na_2O_2 | 1 | -1 H_2O | 2 | 2 Na_2SO_4 | 1 | 1 Fe_2(SO_4)_3·xH_2O | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 2 | -2 | ([H2SO4])^(-2) FeSO_4 | 2 | -2 | ([FeSO4])^(-2) Na_2O_2 | 1 | -1 | ([Na2O2])^(-1) H_2O | 2 | 2 | ([H2O])^2 Na_2SO_4 | 1 | 1 | [Na2SO4] Fe_2(SO_4)_3·xH_2O | 1 | 1 | [Fe2(SO4)3·xH2O] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-2) ([FeSO4])^(-2) ([Na2O2])^(-1) ([H2O])^2 [Na2SO4] [Fe2(SO4)3·xH2O] = (([H2O])^2 [Na2SO4] [Fe2(SO4)3·xH2O])/(([H2SO4])^2 ([FeSO4])^2 [Na2O2])
Rate of reaction
Construct the rate of reaction expression for: H_2SO_4 + FeSO_4 + Na_2O_2 ⟶ H_2O + Na_2SO_4 + Fe_2(SO_4)_3·xH_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 2 H_2SO_4 + 2 FeSO_4 + Na_2O_2 ⟶ 2 H_2O + Na_2SO_4 + Fe_2(SO_4)_3·xH_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 2 | -2 FeSO_4 | 2 | -2 Na_2O_2 | 1 | -1 H_2O | 2 | 2 Na_2SO_4 | 1 | 1 Fe_2(SO_4)_3·xH_2O | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 2 | -2 | -1/2 (Δ[H2SO4])/(Δt) FeSO_4 | 2 | -2 | -1/2 (Δ[FeSO4])/(Δt) Na_2O_2 | 1 | -1 | -(Δ[Na2O2])/(Δt) H_2O | 2 | 2 | 1/2 (Δ[H2O])/(Δt) Na_2SO_4 | 1 | 1 | (Δ[Na2SO4])/(Δt) Fe_2(SO_4)_3·xH_2O | 1 | 1 | (Δ[Fe2(SO4)3·xH2O])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/2 (Δ[H2SO4])/(Δt) = -1/2 (Δ[FeSO4])/(Δt) = -(Δ[Na2O2])/(Δt) = 1/2 (Δ[H2O])/(Δt) = (Δ[Na2SO4])/(Δt) = (Δ[Fe2(SO4)3·xH2O])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Chemical names and formulas
| sulfuric acid | duretter | sodium peroxide | water | sodium sulfate | iron(III) sulfate hydrate formula | H_2SO_4 | FeSO_4 | Na_2O_2 | H_2O | Na_2SO_4 | Fe_2(SO_4)_3·xH_2O Hill formula | H_2O_4S | FeO_4S | Na_2O_2 | H_2O | Na_2O_4S | Fe_2O_12S_3 name | sulfuric acid | duretter | sodium peroxide | water | sodium sulfate | iron(III) sulfate hydrate IUPAC name | sulfuric acid | iron(+2) cation sulfate | disodium peroxide | water | disodium sulfate | diferric trisulfate
Substance properties
| sulfuric acid | duretter | sodium peroxide | water | sodium sulfate | iron(III) sulfate hydrate molar mass | 98.07 g/mol | 151.9 g/mol | 77.978 g/mol | 18.015 g/mol | 142.04 g/mol | 399.9 g/mol phase | liquid (at STP) | | solid (at STP) | liquid (at STP) | solid (at STP) | melting point | 10.371 °C | | 660 °C | 0 °C | 884 °C | boiling point | 279.6 °C | | | 99.9839 °C | 1429 °C | density | 1.8305 g/cm^3 | 2.841 g/cm^3 | 2.805 g/cm^3 | 1 g/cm^3 | 2.68 g/cm^3 | solubility in water | very soluble | | reacts | | soluble | slightly soluble surface tension | 0.0735 N/m | | | 0.0728 N/m | | dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | odor | odorless | | | odorless | |
Units