Search

H2SO4 + Zn(OH)2 = H2O + ZnSO4

Input interpretation

sulfuric acid + zinc hydroxide ⟶ water + zinc sulfate
sulfuric acid + zinc hydroxide ⟶ water + zinc sulfate

Balanced equation

Balance the chemical equation algebraically:  + ⟶ +  Add stoichiometric coefficients, c_i, to the reactants and products: c_1 + c_2 ⟶ c_3 + c_4  Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S and Zn: H: | 2 c_1 + 2 c_2 = 2 c_3 O: | 4 c_1 + 2 c_2 = c_3 + 4 c_4 S: | c_1 = c_4 Zn: | c_2 = c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 2 c_4 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | + ⟶ 2 +
Balance the chemical equation algebraically: + ⟶ + Add stoichiometric coefficients, c_i, to the reactants and products: c_1 + c_2 ⟶ c_3 + c_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S and Zn: H: | 2 c_1 + 2 c_2 = 2 c_3 O: | 4 c_1 + 2 c_2 = c_3 + 4 c_4 S: | c_1 = c_4 Zn: | c_2 = c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 2 c_4 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | + ⟶ 2 +

Structures

 + ⟶ +
+ ⟶ +

Names

sulfuric acid + zinc hydroxide ⟶ water + zinc sulfate
sulfuric acid + zinc hydroxide ⟶ water + zinc sulfate