Search

H2O + I2 + Na2CO3 + NaAsO2 = CO2 + NaI + NaH2AsO4

Input interpretation

H_2O water + I_2 iodine + Na_2CO_3 soda ash + NaAsO_2 sodium arsenite ⟶ CO_2 carbon dioxide + NaI sodium iodide + AsH_2NaO_4 monosodium arsenate
H_2O water + I_2 iodine + Na_2CO_3 soda ash + NaAsO_2 sodium arsenite ⟶ CO_2 carbon dioxide + NaI sodium iodide + AsH_2NaO_4 monosodium arsenate

Balanced equation

Balance the chemical equation algebraically: H_2O + I_2 + Na_2CO_3 + NaAsO_2 ⟶ CO_2 + NaI + AsH_2NaO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 I_2 + c_3 Na_2CO_3 + c_4 NaAsO_2 ⟶ c_5 CO_2 + c_6 NaI + c_7 AsH_2NaO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, I, C, Na and As: H: | 2 c_1 = 2 c_7 O: | c_1 + 3 c_3 + 2 c_4 = 2 c_5 + 4 c_7 I: | 2 c_2 = c_6 C: | c_3 = c_5 Na: | 2 c_3 + c_4 = c_6 + c_7 As: | c_4 = c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 1 c_4 = 1 c_5 = 1 c_6 = 2 c_7 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | H_2O + I_2 + Na_2CO_3 + NaAsO_2 ⟶ CO_2 + 2 NaI + AsH_2NaO_4
Balance the chemical equation algebraically: H_2O + I_2 + Na_2CO_3 + NaAsO_2 ⟶ CO_2 + NaI + AsH_2NaO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 I_2 + c_3 Na_2CO_3 + c_4 NaAsO_2 ⟶ c_5 CO_2 + c_6 NaI + c_7 AsH_2NaO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, I, C, Na and As: H: | 2 c_1 = 2 c_7 O: | c_1 + 3 c_3 + 2 c_4 = 2 c_5 + 4 c_7 I: | 2 c_2 = c_6 C: | c_3 = c_5 Na: | 2 c_3 + c_4 = c_6 + c_7 As: | c_4 = c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 1 c_4 = 1 c_5 = 1 c_6 = 2 c_7 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | H_2O + I_2 + Na_2CO_3 + NaAsO_2 ⟶ CO_2 + 2 NaI + AsH_2NaO_4

Structures

 + + + ⟶ + +
+ + + ⟶ + +

Names

water + iodine + soda ash + sodium arsenite ⟶ carbon dioxide + sodium iodide + monosodium arsenate
water + iodine + soda ash + sodium arsenite ⟶ carbon dioxide + sodium iodide + monosodium arsenate

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2O + I_2 + Na_2CO_3 + NaAsO_2 ⟶ CO_2 + NaI + AsH_2NaO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: H_2O + I_2 + Na_2CO_3 + NaAsO_2 ⟶ CO_2 + 2 NaI + AsH_2NaO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 1 | -1 I_2 | 1 | -1 Na_2CO_3 | 1 | -1 NaAsO_2 | 1 | -1 CO_2 | 1 | 1 NaI | 2 | 2 AsH_2NaO_4 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 1 | -1 | ([H2O])^(-1) I_2 | 1 | -1 | ([I2])^(-1) Na_2CO_3 | 1 | -1 | ([Na2CO3])^(-1) NaAsO_2 | 1 | -1 | ([NaAsO2])^(-1) CO_2 | 1 | 1 | [CO2] NaI | 2 | 2 | ([NaI])^2 AsH_2NaO_4 | 1 | 1 | [AsH2NaO4] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2O])^(-1) ([I2])^(-1) ([Na2CO3])^(-1) ([NaAsO2])^(-1) [CO2] ([NaI])^2 [AsH2NaO4] = ([CO2] ([NaI])^2 [AsH2NaO4])/([H2O] [I2] [Na2CO3] [NaAsO2])
Construct the equilibrium constant, K, expression for: H_2O + I_2 + Na_2CO_3 + NaAsO_2 ⟶ CO_2 + NaI + AsH_2NaO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: H_2O + I_2 + Na_2CO_3 + NaAsO_2 ⟶ CO_2 + 2 NaI + AsH_2NaO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 1 | -1 I_2 | 1 | -1 Na_2CO_3 | 1 | -1 NaAsO_2 | 1 | -1 CO_2 | 1 | 1 NaI | 2 | 2 AsH_2NaO_4 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 1 | -1 | ([H2O])^(-1) I_2 | 1 | -1 | ([I2])^(-1) Na_2CO_3 | 1 | -1 | ([Na2CO3])^(-1) NaAsO_2 | 1 | -1 | ([NaAsO2])^(-1) CO_2 | 1 | 1 | [CO2] NaI | 2 | 2 | ([NaI])^2 AsH_2NaO_4 | 1 | 1 | [AsH2NaO4] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2O])^(-1) ([I2])^(-1) ([Na2CO3])^(-1) ([NaAsO2])^(-1) [CO2] ([NaI])^2 [AsH2NaO4] = ([CO2] ([NaI])^2 [AsH2NaO4])/([H2O] [I2] [Na2CO3] [NaAsO2])

Rate of reaction

Construct the rate of reaction expression for: H_2O + I_2 + Na_2CO_3 + NaAsO_2 ⟶ CO_2 + NaI + AsH_2NaO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: H_2O + I_2 + Na_2CO_3 + NaAsO_2 ⟶ CO_2 + 2 NaI + AsH_2NaO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 1 | -1 I_2 | 1 | -1 Na_2CO_3 | 1 | -1 NaAsO_2 | 1 | -1 CO_2 | 1 | 1 NaI | 2 | 2 AsH_2NaO_4 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 1 | -1 | -(Δ[H2O])/(Δt) I_2 | 1 | -1 | -(Δ[I2])/(Δt) Na_2CO_3 | 1 | -1 | -(Δ[Na2CO3])/(Δt) NaAsO_2 | 1 | -1 | -(Δ[NaAsO2])/(Δt) CO_2 | 1 | 1 | (Δ[CO2])/(Δt) NaI | 2 | 2 | 1/2 (Δ[NaI])/(Δt) AsH_2NaO_4 | 1 | 1 | (Δ[AsH2NaO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -(Δ[H2O])/(Δt) = -(Δ[I2])/(Δt) = -(Δ[Na2CO3])/(Δt) = -(Δ[NaAsO2])/(Δt) = (Δ[CO2])/(Δt) = 1/2 (Δ[NaI])/(Δt) = (Δ[AsH2NaO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2O + I_2 + Na_2CO_3 + NaAsO_2 ⟶ CO_2 + NaI + AsH_2NaO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: H_2O + I_2 + Na_2CO_3 + NaAsO_2 ⟶ CO_2 + 2 NaI + AsH_2NaO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 1 | -1 I_2 | 1 | -1 Na_2CO_3 | 1 | -1 NaAsO_2 | 1 | -1 CO_2 | 1 | 1 NaI | 2 | 2 AsH_2NaO_4 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 1 | -1 | -(Δ[H2O])/(Δt) I_2 | 1 | -1 | -(Δ[I2])/(Δt) Na_2CO_3 | 1 | -1 | -(Δ[Na2CO3])/(Δt) NaAsO_2 | 1 | -1 | -(Δ[NaAsO2])/(Δt) CO_2 | 1 | 1 | (Δ[CO2])/(Δt) NaI | 2 | 2 | 1/2 (Δ[NaI])/(Δt) AsH_2NaO_4 | 1 | 1 | (Δ[AsH2NaO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[H2O])/(Δt) = -(Δ[I2])/(Δt) = -(Δ[Na2CO3])/(Δt) = -(Δ[NaAsO2])/(Δt) = (Δ[CO2])/(Δt) = 1/2 (Δ[NaI])/(Δt) = (Δ[AsH2NaO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | water | iodine | soda ash | sodium arsenite | carbon dioxide | sodium iodide | monosodium arsenate formula | H_2O | I_2 | Na_2CO_3 | NaAsO_2 | CO_2 | NaI | AsH_2NaO_4 Hill formula | H_2O | I_2 | CNa_2O_3 | AsNaO_2 | CO_2 | INa | AsH_2NaO_4 name | water | iodine | soda ash | sodium arsenite | carbon dioxide | sodium iodide | monosodium arsenate IUPAC name | water | molecular iodine | disodium carbonate | | carbon dioxide | sodium iodide | sodium oxidoarsonic acid
| water | iodine | soda ash | sodium arsenite | carbon dioxide | sodium iodide | monosodium arsenate formula | H_2O | I_2 | Na_2CO_3 | NaAsO_2 | CO_2 | NaI | AsH_2NaO_4 Hill formula | H_2O | I_2 | CNa_2O_3 | AsNaO_2 | CO_2 | INa | AsH_2NaO_4 name | water | iodine | soda ash | sodium arsenite | carbon dioxide | sodium iodide | monosodium arsenate IUPAC name | water | molecular iodine | disodium carbonate | | carbon dioxide | sodium iodide | sodium oxidoarsonic acid