Search

Cl2 + NaOH + Cr2(SO4)3 = H2O + NaCl + Na2SO4 + Na2CrO4

Input interpretation

Cl_2 (chlorine) + NaOH (sodium hydroxide) + Cr_2(SO_4)_3 (chromium sulfate) ⟶ H_2O (water) + NaCl (sodium chloride) + Na_2SO_4 (sodium sulfate) + Na_2CrO_4 (sodium chromate)
Cl_2 (chlorine) + NaOH (sodium hydroxide) + Cr_2(SO_4)_3 (chromium sulfate) ⟶ H_2O (water) + NaCl (sodium chloride) + Na_2SO_4 (sodium sulfate) + Na_2CrO_4 (sodium chromate)

Balanced equation

Balance the chemical equation algebraically: Cl_2 + NaOH + Cr_2(SO_4)_3 ⟶ H_2O + NaCl + Na_2SO_4 + Na_2CrO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Cl_2 + c_2 NaOH + c_3 Cr_2(SO_4)_3 ⟶ c_4 H_2O + c_5 NaCl + c_6 Na_2SO_4 + c_7 Na_2CrO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, H, Na, O, Cr and S: Cl: | 2 c_1 = c_5 H: | c_2 = 2 c_4 Na: | c_2 = c_5 + 2 c_6 + 2 c_7 O: | c_2 + 12 c_3 = c_4 + 4 c_6 + 4 c_7 Cr: | 2 c_3 = c_7 S: | 3 c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 16 c_3 = 1 c_4 = 8 c_5 = 6 c_6 = 3 c_7 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 3 Cl_2 + 16 NaOH + Cr_2(SO_4)_3 ⟶ 8 H_2O + 6 NaCl + 3 Na_2SO_4 + 2 Na_2CrO_4
Balance the chemical equation algebraically: Cl_2 + NaOH + Cr_2(SO_4)_3 ⟶ H_2O + NaCl + Na_2SO_4 + Na_2CrO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Cl_2 + c_2 NaOH + c_3 Cr_2(SO_4)_3 ⟶ c_4 H_2O + c_5 NaCl + c_6 Na_2SO_4 + c_7 Na_2CrO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, H, Na, O, Cr and S: Cl: | 2 c_1 = c_5 H: | c_2 = 2 c_4 Na: | c_2 = c_5 + 2 c_6 + 2 c_7 O: | c_2 + 12 c_3 = c_4 + 4 c_6 + 4 c_7 Cr: | 2 c_3 = c_7 S: | 3 c_3 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3 c_2 = 16 c_3 = 1 c_4 = 8 c_5 = 6 c_6 = 3 c_7 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 3 Cl_2 + 16 NaOH + Cr_2(SO_4)_3 ⟶ 8 H_2O + 6 NaCl + 3 Na_2SO_4 + 2 Na_2CrO_4

Structures

 + + ⟶ + + +
+ + ⟶ + + +

Names

chlorine + sodium hydroxide + chromium sulfate ⟶ water + sodium chloride + sodium sulfate + sodium chromate
chlorine + sodium hydroxide + chromium sulfate ⟶ water + sodium chloride + sodium sulfate + sodium chromate

Equilibrium constant

Construct the equilibrium constant, K, expression for: Cl_2 + NaOH + Cr_2(SO_4)_3 ⟶ H_2O + NaCl + Na_2SO_4 + Na_2CrO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 Cl_2 + 16 NaOH + Cr_2(SO_4)_3 ⟶ 8 H_2O + 6 NaCl + 3 Na_2SO_4 + 2 Na_2CrO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Cl_2 | 3 | -3 NaOH | 16 | -16 Cr_2(SO_4)_3 | 1 | -1 H_2O | 8 | 8 NaCl | 6 | 6 Na_2SO_4 | 3 | 3 Na_2CrO_4 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Cl_2 | 3 | -3 | ([Cl2])^(-3) NaOH | 16 | -16 | ([NaOH])^(-16) Cr_2(SO_4)_3 | 1 | -1 | ([Cr2(SO4)3])^(-1) H_2O | 8 | 8 | ([H2O])^8 NaCl | 6 | 6 | ([NaCl])^6 Na_2SO_4 | 3 | 3 | ([Na2SO4])^3 Na_2CrO_4 | 2 | 2 | ([Na2CrO4])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([Cl2])^(-3) ([NaOH])^(-16) ([Cr2(SO4)3])^(-1) ([H2O])^8 ([NaCl])^6 ([Na2SO4])^3 ([Na2CrO4])^2 = (([H2O])^8 ([NaCl])^6 ([Na2SO4])^3 ([Na2CrO4])^2)/(([Cl2])^3 ([NaOH])^16 [Cr2(SO4)3])
Construct the equilibrium constant, K, expression for: Cl_2 + NaOH + Cr_2(SO_4)_3 ⟶ H_2O + NaCl + Na_2SO_4 + Na_2CrO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 Cl_2 + 16 NaOH + Cr_2(SO_4)_3 ⟶ 8 H_2O + 6 NaCl + 3 Na_2SO_4 + 2 Na_2CrO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Cl_2 | 3 | -3 NaOH | 16 | -16 Cr_2(SO_4)_3 | 1 | -1 H_2O | 8 | 8 NaCl | 6 | 6 Na_2SO_4 | 3 | 3 Na_2CrO_4 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Cl_2 | 3 | -3 | ([Cl2])^(-3) NaOH | 16 | -16 | ([NaOH])^(-16) Cr_2(SO_4)_3 | 1 | -1 | ([Cr2(SO4)3])^(-1) H_2O | 8 | 8 | ([H2O])^8 NaCl | 6 | 6 | ([NaCl])^6 Na_2SO_4 | 3 | 3 | ([Na2SO4])^3 Na_2CrO_4 | 2 | 2 | ([Na2CrO4])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([Cl2])^(-3) ([NaOH])^(-16) ([Cr2(SO4)3])^(-1) ([H2O])^8 ([NaCl])^6 ([Na2SO4])^3 ([Na2CrO4])^2 = (([H2O])^8 ([NaCl])^6 ([Na2SO4])^3 ([Na2CrO4])^2)/(([Cl2])^3 ([NaOH])^16 [Cr2(SO4)3])

Rate of reaction

Construct the rate of reaction expression for: Cl_2 + NaOH + Cr_2(SO_4)_3 ⟶ H_2O + NaCl + Na_2SO_4 + Na_2CrO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 Cl_2 + 16 NaOH + Cr_2(SO_4)_3 ⟶ 8 H_2O + 6 NaCl + 3 Na_2SO_4 + 2 Na_2CrO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Cl_2 | 3 | -3 NaOH | 16 | -16 Cr_2(SO_4)_3 | 1 | -1 H_2O | 8 | 8 NaCl | 6 | 6 Na_2SO_4 | 3 | 3 Na_2CrO_4 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Cl_2 | 3 | -3 | -1/3 (Δ[Cl2])/(Δt) NaOH | 16 | -16 | -1/16 (Δ[NaOH])/(Δt) Cr_2(SO_4)_3 | 1 | -1 | -(Δ[Cr2(SO4)3])/(Δt) H_2O | 8 | 8 | 1/8 (Δ[H2O])/(Δt) NaCl | 6 | 6 | 1/6 (Δ[NaCl])/(Δt) Na_2SO_4 | 3 | 3 | 1/3 (Δ[Na2SO4])/(Δt) Na_2CrO_4 | 2 | 2 | 1/2 (Δ[Na2CrO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/3 (Δ[Cl2])/(Δt) = -1/16 (Δ[NaOH])/(Δt) = -(Δ[Cr2(SO4)3])/(Δt) = 1/8 (Δ[H2O])/(Δt) = 1/6 (Δ[NaCl])/(Δt) = 1/3 (Δ[Na2SO4])/(Δt) = 1/2 (Δ[Na2CrO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: Cl_2 + NaOH + Cr_2(SO_4)_3 ⟶ H_2O + NaCl + Na_2SO_4 + Na_2CrO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 Cl_2 + 16 NaOH + Cr_2(SO_4)_3 ⟶ 8 H_2O + 6 NaCl + 3 Na_2SO_4 + 2 Na_2CrO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Cl_2 | 3 | -3 NaOH | 16 | -16 Cr_2(SO_4)_3 | 1 | -1 H_2O | 8 | 8 NaCl | 6 | 6 Na_2SO_4 | 3 | 3 Na_2CrO_4 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Cl_2 | 3 | -3 | -1/3 (Δ[Cl2])/(Δt) NaOH | 16 | -16 | -1/16 (Δ[NaOH])/(Δt) Cr_2(SO_4)_3 | 1 | -1 | -(Δ[Cr2(SO4)3])/(Δt) H_2O | 8 | 8 | 1/8 (Δ[H2O])/(Δt) NaCl | 6 | 6 | 1/6 (Δ[NaCl])/(Δt) Na_2SO_4 | 3 | 3 | 1/3 (Δ[Na2SO4])/(Δt) Na_2CrO_4 | 2 | 2 | 1/2 (Δ[Na2CrO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/3 (Δ[Cl2])/(Δt) = -1/16 (Δ[NaOH])/(Δt) = -(Δ[Cr2(SO4)3])/(Δt) = 1/8 (Δ[H2O])/(Δt) = 1/6 (Δ[NaCl])/(Δt) = 1/3 (Δ[Na2SO4])/(Δt) = 1/2 (Δ[Na2CrO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | chlorine | sodium hydroxide | chromium sulfate | water | sodium chloride | sodium sulfate | sodium chromate formula | Cl_2 | NaOH | Cr_2(SO_4)_3 | H_2O | NaCl | Na_2SO_4 | Na_2CrO_4 Hill formula | Cl_2 | HNaO | Cr_2O_12S_3 | H_2O | ClNa | Na_2O_4S | CrNa_2O_4 name | chlorine | sodium hydroxide | chromium sulfate | water | sodium chloride | sodium sulfate | sodium chromate IUPAC name | molecular chlorine | sodium hydroxide | chromium(+3) cation trisulfate | water | sodium chloride | disodium sulfate | disodium dioxido(dioxo)chromium
| chlorine | sodium hydroxide | chromium sulfate | water | sodium chloride | sodium sulfate | sodium chromate formula | Cl_2 | NaOH | Cr_2(SO_4)_3 | H_2O | NaCl | Na_2SO_4 | Na_2CrO_4 Hill formula | Cl_2 | HNaO | Cr_2O_12S_3 | H_2O | ClNa | Na_2O_4S | CrNa_2O_4 name | chlorine | sodium hydroxide | chromium sulfate | water | sodium chloride | sodium sulfate | sodium chromate IUPAC name | molecular chlorine | sodium hydroxide | chromium(+3) cation trisulfate | water | sodium chloride | disodium sulfate | disodium dioxido(dioxo)chromium

Substance properties

 | chlorine | sodium hydroxide | chromium sulfate | water | sodium chloride | sodium sulfate | sodium chromate molar mass | 70.9 g/mol | 39.997 g/mol | 392.2 g/mol | 18.015 g/mol | 58.44 g/mol | 142.04 g/mol | 161.97 g/mol phase | gas (at STP) | solid (at STP) | liquid (at STP) | liquid (at STP) | solid (at STP) | solid (at STP) | solid (at STP) melting point | -101 °C | 323 °C | | 0 °C | 801 °C | 884 °C | 780 °C boiling point | -34 °C | 1390 °C | 330 °C | 99.9839 °C | 1413 °C | 1429 °C |  density | 0.003214 g/cm^3 (at 0 °C) | 2.13 g/cm^3 | 1.84 g/cm^3 | 1 g/cm^3 | 2.16 g/cm^3 | 2.68 g/cm^3 | 2.698 g/cm^3 solubility in water | | soluble | | | soluble | soluble |  surface tension | | 0.07435 N/m | | 0.0728 N/m | | |  dynamic viscosity | | 0.004 Pa s (at 350 °C) | | 8.9×10^-4 Pa s (at 25 °C) | | |  odor | | | odorless | odorless | odorless | |
| chlorine | sodium hydroxide | chromium sulfate | water | sodium chloride | sodium sulfate | sodium chromate molar mass | 70.9 g/mol | 39.997 g/mol | 392.2 g/mol | 18.015 g/mol | 58.44 g/mol | 142.04 g/mol | 161.97 g/mol phase | gas (at STP) | solid (at STP) | liquid (at STP) | liquid (at STP) | solid (at STP) | solid (at STP) | solid (at STP) melting point | -101 °C | 323 °C | | 0 °C | 801 °C | 884 °C | 780 °C boiling point | -34 °C | 1390 °C | 330 °C | 99.9839 °C | 1413 °C | 1429 °C | density | 0.003214 g/cm^3 (at 0 °C) | 2.13 g/cm^3 | 1.84 g/cm^3 | 1 g/cm^3 | 2.16 g/cm^3 | 2.68 g/cm^3 | 2.698 g/cm^3 solubility in water | | soluble | | | soluble | soluble | surface tension | | 0.07435 N/m | | 0.0728 N/m | | | dynamic viscosity | | 0.004 Pa s (at 350 °C) | | 8.9×10^-4 Pa s (at 25 °C) | | | odor | | | odorless | odorless | odorless | |

Units