Search

H2SO4 + NaI + NaBiO3 = H2O + I2 + Na2SO4 + Bi2(SO4)3

Input interpretation

H_2SO_4 sulfuric acid + NaI sodium iodide + NaBiO_3 sodium bismuthate ⟶ H_2O water + I_2 iodine + Na_2SO_4 sodium sulfate + Bi_2(SO_4)_3 bismuth sulfate
H_2SO_4 sulfuric acid + NaI sodium iodide + NaBiO_3 sodium bismuthate ⟶ H_2O water + I_2 iodine + Na_2SO_4 sodium sulfate + Bi_2(SO_4)_3 bismuth sulfate

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + NaI + NaBiO_3 ⟶ H_2O + I_2 + Na_2SO_4 + Bi_2(SO_4)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 NaI + c_3 NaBiO_3 ⟶ c_4 H_2O + c_5 I_2 + c_6 Na_2SO_4 + c_7 Bi_2(SO_4)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, I, Na and Bi: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 3 c_3 = c_4 + 4 c_6 + 12 c_7 S: | c_1 = c_6 + 3 c_7 I: | c_2 = 2 c_5 Na: | c_2 + c_3 = 2 c_6 Bi: | c_3 = 2 c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_7 = 1 and solve the system of equations for the remaining coefficients: c_1 = 6 c_2 = 4 c_3 = 2 c_4 = 6 c_5 = 2 c_6 = 3 c_7 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 6 H_2SO_4 + 4 NaI + 2 NaBiO_3 ⟶ 6 H_2O + 2 I_2 + 3 Na_2SO_4 + Bi_2(SO_4)_3
Balance the chemical equation algebraically: H_2SO_4 + NaI + NaBiO_3 ⟶ H_2O + I_2 + Na_2SO_4 + Bi_2(SO_4)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 NaI + c_3 NaBiO_3 ⟶ c_4 H_2O + c_5 I_2 + c_6 Na_2SO_4 + c_7 Bi_2(SO_4)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, I, Na and Bi: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 3 c_3 = c_4 + 4 c_6 + 12 c_7 S: | c_1 = c_6 + 3 c_7 I: | c_2 = 2 c_5 Na: | c_2 + c_3 = 2 c_6 Bi: | c_3 = 2 c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_7 = 1 and solve the system of equations for the remaining coefficients: c_1 = 6 c_2 = 4 c_3 = 2 c_4 = 6 c_5 = 2 c_6 = 3 c_7 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 6 H_2SO_4 + 4 NaI + 2 NaBiO_3 ⟶ 6 H_2O + 2 I_2 + 3 Na_2SO_4 + Bi_2(SO_4)_3

Structures

 + + ⟶ + + +
+ + ⟶ + + +

Names

sulfuric acid + sodium iodide + sodium bismuthate ⟶ water + iodine + sodium sulfate + bismuth sulfate
sulfuric acid + sodium iodide + sodium bismuthate ⟶ water + iodine + sodium sulfate + bismuth sulfate

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + NaI + NaBiO_3 ⟶ H_2O + I_2 + Na_2SO_4 + Bi_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 H_2SO_4 + 4 NaI + 2 NaBiO_3 ⟶ 6 H_2O + 2 I_2 + 3 Na_2SO_4 + Bi_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 6 | -6 NaI | 4 | -4 NaBiO_3 | 2 | -2 H_2O | 6 | 6 I_2 | 2 | 2 Na_2SO_4 | 3 | 3 Bi_2(SO_4)_3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 6 | -6 | ([H2SO4])^(-6) NaI | 4 | -4 | ([NaI])^(-4) NaBiO_3 | 2 | -2 | ([NaBiO3])^(-2) H_2O | 6 | 6 | ([H2O])^6 I_2 | 2 | 2 | ([I2])^2 Na_2SO_4 | 3 | 3 | ([Na2SO4])^3 Bi_2(SO_4)_3 | 1 | 1 | [Bi2(SO4)3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-6) ([NaI])^(-4) ([NaBiO3])^(-2) ([H2O])^6 ([I2])^2 ([Na2SO4])^3 [Bi2(SO4)3] = (([H2O])^6 ([I2])^2 ([Na2SO4])^3 [Bi2(SO4)3])/(([H2SO4])^6 ([NaI])^4 ([NaBiO3])^2)
Construct the equilibrium constant, K, expression for: H_2SO_4 + NaI + NaBiO_3 ⟶ H_2O + I_2 + Na_2SO_4 + Bi_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 H_2SO_4 + 4 NaI + 2 NaBiO_3 ⟶ 6 H_2O + 2 I_2 + 3 Na_2SO_4 + Bi_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 6 | -6 NaI | 4 | -4 NaBiO_3 | 2 | -2 H_2O | 6 | 6 I_2 | 2 | 2 Na_2SO_4 | 3 | 3 Bi_2(SO_4)_3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 6 | -6 | ([H2SO4])^(-6) NaI | 4 | -4 | ([NaI])^(-4) NaBiO_3 | 2 | -2 | ([NaBiO3])^(-2) H_2O | 6 | 6 | ([H2O])^6 I_2 | 2 | 2 | ([I2])^2 Na_2SO_4 | 3 | 3 | ([Na2SO4])^3 Bi_2(SO_4)_3 | 1 | 1 | [Bi2(SO4)3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-6) ([NaI])^(-4) ([NaBiO3])^(-2) ([H2O])^6 ([I2])^2 ([Na2SO4])^3 [Bi2(SO4)3] = (([H2O])^6 ([I2])^2 ([Na2SO4])^3 [Bi2(SO4)3])/(([H2SO4])^6 ([NaI])^4 ([NaBiO3])^2)

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + NaI + NaBiO_3 ⟶ H_2O + I_2 + Na_2SO_4 + Bi_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 H_2SO_4 + 4 NaI + 2 NaBiO_3 ⟶ 6 H_2O + 2 I_2 + 3 Na_2SO_4 + Bi_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 6 | -6 NaI | 4 | -4 NaBiO_3 | 2 | -2 H_2O | 6 | 6 I_2 | 2 | 2 Na_2SO_4 | 3 | 3 Bi_2(SO_4)_3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 6 | -6 | -1/6 (Δ[H2SO4])/(Δt) NaI | 4 | -4 | -1/4 (Δ[NaI])/(Δt) NaBiO_3 | 2 | -2 | -1/2 (Δ[NaBiO3])/(Δt) H_2O | 6 | 6 | 1/6 (Δ[H2O])/(Δt) I_2 | 2 | 2 | 1/2 (Δ[I2])/(Δt) Na_2SO_4 | 3 | 3 | 1/3 (Δ[Na2SO4])/(Δt) Bi_2(SO_4)_3 | 1 | 1 | (Δ[Bi2(SO4)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/6 (Δ[H2SO4])/(Δt) = -1/4 (Δ[NaI])/(Δt) = -1/2 (Δ[NaBiO3])/(Δt) = 1/6 (Δ[H2O])/(Δt) = 1/2 (Δ[I2])/(Δt) = 1/3 (Δ[Na2SO4])/(Δt) = (Δ[Bi2(SO4)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + NaI + NaBiO_3 ⟶ H_2O + I_2 + Na_2SO_4 + Bi_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 H_2SO_4 + 4 NaI + 2 NaBiO_3 ⟶ 6 H_2O + 2 I_2 + 3 Na_2SO_4 + Bi_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 6 | -6 NaI | 4 | -4 NaBiO_3 | 2 | -2 H_2O | 6 | 6 I_2 | 2 | 2 Na_2SO_4 | 3 | 3 Bi_2(SO_4)_3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 6 | -6 | -1/6 (Δ[H2SO4])/(Δt) NaI | 4 | -4 | -1/4 (Δ[NaI])/(Δt) NaBiO_3 | 2 | -2 | -1/2 (Δ[NaBiO3])/(Δt) H_2O | 6 | 6 | 1/6 (Δ[H2O])/(Δt) I_2 | 2 | 2 | 1/2 (Δ[I2])/(Δt) Na_2SO_4 | 3 | 3 | 1/3 (Δ[Na2SO4])/(Δt) Bi_2(SO_4)_3 | 1 | 1 | (Δ[Bi2(SO4)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/6 (Δ[H2SO4])/(Δt) = -1/4 (Δ[NaI])/(Δt) = -1/2 (Δ[NaBiO3])/(Δt) = 1/6 (Δ[H2O])/(Δt) = 1/2 (Δ[I2])/(Δt) = 1/3 (Δ[Na2SO4])/(Δt) = (Δ[Bi2(SO4)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | sodium iodide | sodium bismuthate | water | iodine | sodium sulfate | bismuth sulfate formula | H_2SO_4 | NaI | NaBiO_3 | H_2O | I_2 | Na_2SO_4 | Bi_2(SO_4)_3 Hill formula | H_2O_4S | INa | BiNaO_3 | H_2O | I_2 | Na_2O_4S | Bi_2O_12S_3 name | sulfuric acid | sodium iodide | sodium bismuthate | water | iodine | sodium sulfate | bismuth sulfate IUPAC name | sulfuric acid | sodium iodide | sodium oxido-dioxobismuth | water | molecular iodine | disodium sulfate | dibismuth trisulfate
| sulfuric acid | sodium iodide | sodium bismuthate | water | iodine | sodium sulfate | bismuth sulfate formula | H_2SO_4 | NaI | NaBiO_3 | H_2O | I_2 | Na_2SO_4 | Bi_2(SO_4)_3 Hill formula | H_2O_4S | INa | BiNaO_3 | H_2O | I_2 | Na_2O_4S | Bi_2O_12S_3 name | sulfuric acid | sodium iodide | sodium bismuthate | water | iodine | sodium sulfate | bismuth sulfate IUPAC name | sulfuric acid | sodium iodide | sodium oxido-dioxobismuth | water | molecular iodine | disodium sulfate | dibismuth trisulfate