Search

H2SO4 + HNO3 + FeSO4 = H2O + Fe2(SO4)3 + HNO2

Input interpretation

H_2SO_4 sulfuric acid + HNO_3 nitric acid + FeSO_4 duretter ⟶ H_2O water + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate + HNO_2 nitrous acid
H_2SO_4 sulfuric acid + HNO_3 nitric acid + FeSO_4 duretter ⟶ H_2O water + Fe_2(SO_4)_3·xH_2O iron(III) sulfate hydrate + HNO_2 nitrous acid

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + HNO_3 + FeSO_4 ⟶ H_2O + Fe_2(SO_4)_3·xH_2O + HNO_2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 HNO_3 + c_3 FeSO_4 ⟶ c_4 H_2O + c_5 Fe_2(SO_4)_3·xH_2O + c_6 HNO_2 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, N and Fe: H: | 2 c_1 + c_2 = 2 c_4 + c_6 O: | 4 c_1 + 3 c_2 + 4 c_3 = c_4 + 12 c_5 + 2 c_6 S: | c_1 + c_3 = 3 c_5 N: | c_2 = c_6 Fe: | c_3 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 2 c_4 = 1 c_5 = 1 c_6 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | H_2SO_4 + HNO_3 + 2 FeSO_4 ⟶ H_2O + Fe_2(SO_4)_3·xH_2O + HNO_2
Balance the chemical equation algebraically: H_2SO_4 + HNO_3 + FeSO_4 ⟶ H_2O + Fe_2(SO_4)_3·xH_2O + HNO_2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 HNO_3 + c_3 FeSO_4 ⟶ c_4 H_2O + c_5 Fe_2(SO_4)_3·xH_2O + c_6 HNO_2 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, N and Fe: H: | 2 c_1 + c_2 = 2 c_4 + c_6 O: | 4 c_1 + 3 c_2 + 4 c_3 = c_4 + 12 c_5 + 2 c_6 S: | c_1 + c_3 = 3 c_5 N: | c_2 = c_6 Fe: | c_3 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 2 c_4 = 1 c_5 = 1 c_6 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | H_2SO_4 + HNO_3 + 2 FeSO_4 ⟶ H_2O + Fe_2(SO_4)_3·xH_2O + HNO_2

Structures

 + + ⟶ + +
+ + ⟶ + +

Names

sulfuric acid + nitric acid + duretter ⟶ water + iron(III) sulfate hydrate + nitrous acid
sulfuric acid + nitric acid + duretter ⟶ water + iron(III) sulfate hydrate + nitrous acid

Equilibrium constant

K_c = ([H2O] [Fe2(SO4)3·xH2O] [HNO2])/([H2SO4] [HNO3] [FeSO4]^2)
K_c = ([H2O] [Fe2(SO4)3·xH2O] [HNO2])/([H2SO4] [HNO3] [FeSO4]^2)

Rate of reaction

rate = -(Δ[H2SO4])/(Δt) = -(Δ[HNO3])/(Δt) = -1/2 (Δ[FeSO4])/(Δt) = (Δ[H2O])/(Δt) = (Δ[Fe2(SO4)3·xH2O])/(Δt) = (Δ[HNO2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
rate = -(Δ[H2SO4])/(Δt) = -(Δ[HNO3])/(Δt) = -1/2 (Δ[FeSO4])/(Δt) = (Δ[H2O])/(Δt) = (Δ[Fe2(SO4)3·xH2O])/(Δt) = (Δ[HNO2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | nitric acid | duretter | water | iron(III) sulfate hydrate | nitrous acid formula | H_2SO_4 | HNO_3 | FeSO_4 | H_2O | Fe_2(SO_4)_3·xH_2O | HNO_2 Hill formula | H_2O_4S | HNO_3 | FeO_4S | H_2O | Fe_2O_12S_3 | HNO_2 name | sulfuric acid | nitric acid | duretter | water | iron(III) sulfate hydrate | nitrous acid IUPAC name | sulfuric acid | nitric acid | iron(+2) cation sulfate | water | diferric trisulfate | nitrous acid
| sulfuric acid | nitric acid | duretter | water | iron(III) sulfate hydrate | nitrous acid formula | H_2SO_4 | HNO_3 | FeSO_4 | H_2O | Fe_2(SO_4)_3·xH_2O | HNO_2 Hill formula | H_2O_4S | HNO_3 | FeO_4S | H_2O | Fe_2O_12S_3 | HNO_2 name | sulfuric acid | nitric acid | duretter | water | iron(III) sulfate hydrate | nitrous acid IUPAC name | sulfuric acid | nitric acid | iron(+2) cation sulfate | water | diferric trisulfate | nitrous acid

Substance properties

 | sulfuric acid | nitric acid | duretter | water | iron(III) sulfate hydrate | nitrous acid molar mass | 98.07 g/mol | 63.012 g/mol | 151.9 g/mol | 18.015 g/mol | 399.9 g/mol | 47.013 g/mol phase | liquid (at STP) | liquid (at STP) | | liquid (at STP) | |  melting point | 10.371 °C | -41.6 °C | | 0 °C | |  boiling point | 279.6 °C | 83 °C | | 99.9839 °C | |  density | 1.8305 g/cm^3 | 1.5129 g/cm^3 | 2.841 g/cm^3 | 1 g/cm^3 | |  solubility in water | very soluble | miscible | | | slightly soluble |  surface tension | 0.0735 N/m | | | 0.0728 N/m | |  dynamic viscosity | 0.021 Pa s (at 25 °C) | 7.6×10^-4 Pa s (at 25 °C) | | 8.9×10^-4 Pa s (at 25 °C) | |  odor | odorless | | | odorless | |
| sulfuric acid | nitric acid | duretter | water | iron(III) sulfate hydrate | nitrous acid molar mass | 98.07 g/mol | 63.012 g/mol | 151.9 g/mol | 18.015 g/mol | 399.9 g/mol | 47.013 g/mol phase | liquid (at STP) | liquid (at STP) | | liquid (at STP) | | melting point | 10.371 °C | -41.6 °C | | 0 °C | | boiling point | 279.6 °C | 83 °C | | 99.9839 °C | | density | 1.8305 g/cm^3 | 1.5129 g/cm^3 | 2.841 g/cm^3 | 1 g/cm^3 | | solubility in water | very soluble | miscible | | | slightly soluble | surface tension | 0.0735 N/m | | | 0.0728 N/m | | dynamic viscosity | 0.021 Pa s (at 25 °C) | 7.6×10^-4 Pa s (at 25 °C) | | 8.9×10^-4 Pa s (at 25 °C) | | odor | odorless | | | odorless | |

Units