Input interpretation
H_2O_2 hydrogen peroxide + NH_4OH ammonium hydroxide + As_2S_3 arsenic(III) sulfide ⟶ H_2O water + S mixed sulfur + (NH4)3AsO4
Balanced equation
Balance the chemical equation algebraically: H_2O_2 + NH_4OH + As_2S_3 ⟶ H_2O + S + (NH4)3AsO4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O_2 + c_2 NH_4OH + c_3 As_2S_3 ⟶ c_4 H_2O + c_5 S + c_6 (NH4)3AsO4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, N, As and S: H: | 2 c_1 + 5 c_2 = 2 c_4 + 12 c_6 O: | 2 c_1 + c_2 = c_4 + 4 c_6 N: | c_2 = 3 c_6 As: | 2 c_3 = c_6 S: | 3 c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 5 c_2 = 6 c_3 = 1 c_4 = 8 c_5 = 3 c_6 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 5 H_2O_2 + 6 NH_4OH + As_2S_3 ⟶ 8 H_2O + 3 S + 2 (NH4)3AsO4
Structures
+ + ⟶ + + (NH4)3AsO4
Names
hydrogen peroxide + ammonium hydroxide + arsenic(III) sulfide ⟶ water + mixed sulfur + (NH4)3AsO4
Equilibrium constant
Construct the equilibrium constant, K, expression for: H_2O_2 + NH_4OH + As_2S_3 ⟶ H_2O + S + (NH4)3AsO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 5 H_2O_2 + 6 NH_4OH + As_2S_3 ⟶ 8 H_2O + 3 S + 2 (NH4)3AsO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O_2 | 5 | -5 NH_4OH | 6 | -6 As_2S_3 | 1 | -1 H_2O | 8 | 8 S | 3 | 3 (NH4)3AsO4 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O_2 | 5 | -5 | ([H2O2])^(-5) NH_4OH | 6 | -6 | ([NH4OH])^(-6) As_2S_3 | 1 | -1 | ([As2S3])^(-1) H_2O | 8 | 8 | ([H2O])^8 S | 3 | 3 | ([S])^3 (NH4)3AsO4 | 2 | 2 | ([(NH4)3AsO4])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2O2])^(-5) ([NH4OH])^(-6) ([As2S3])^(-1) ([H2O])^8 ([S])^3 ([(NH4)3AsO4])^2 = (([H2O])^8 ([S])^3 ([(NH4)3AsO4])^2)/(([H2O2])^5 ([NH4OH])^6 [As2S3])
Rate of reaction
Construct the rate of reaction expression for: H_2O_2 + NH_4OH + As_2S_3 ⟶ H_2O + S + (NH4)3AsO4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 5 H_2O_2 + 6 NH_4OH + As_2S_3 ⟶ 8 H_2O + 3 S + 2 (NH4)3AsO4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O_2 | 5 | -5 NH_4OH | 6 | -6 As_2S_3 | 1 | -1 H_2O | 8 | 8 S | 3 | 3 (NH4)3AsO4 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O_2 | 5 | -5 | -1/5 (Δ[H2O2])/(Δt) NH_4OH | 6 | -6 | -1/6 (Δ[NH4OH])/(Δt) As_2S_3 | 1 | -1 | -(Δ[As2S3])/(Δt) H_2O | 8 | 8 | 1/8 (Δ[H2O])/(Δt) S | 3 | 3 | 1/3 (Δ[S])/(Δt) (NH4)3AsO4 | 2 | 2 | 1/2 (Δ[(NH4)3AsO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/5 (Δ[H2O2])/(Δt) = -1/6 (Δ[NH4OH])/(Δt) = -(Δ[As2S3])/(Δt) = 1/8 (Δ[H2O])/(Δt) = 1/3 (Δ[S])/(Δt) = 1/2 (Δ[(NH4)3AsO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Chemical names and formulas
| hydrogen peroxide | ammonium hydroxide | arsenic(III) sulfide | water | mixed sulfur | (NH4)3AsO4 formula | H_2O_2 | NH_4OH | As_2S_3 | H_2O | S | (NH4)3AsO4 Hill formula | H_2O_2 | H_5NO | As_2S_3 | H_2O | S | H12AsN3O4 name | hydrogen peroxide | ammonium hydroxide | arsenic(III) sulfide | water | mixed sulfur | IUPAC name | hydrogen peroxide | ammonium hydroxide | | water | sulfur |
Substance properties
| hydrogen peroxide | ammonium hydroxide | arsenic(III) sulfide | water | mixed sulfur | (NH4)3AsO4 molar mass | 34.014 g/mol | 35.046 g/mol | 246 g/mol | 18.015 g/mol | 32.06 g/mol | 193.03 g/mol phase | liquid (at STP) | aqueous (at STP) | solid (at STP) | liquid (at STP) | solid (at STP) | melting point | -0.43 °C | -57.5 °C | 300 °C | 0 °C | 112.8 °C | boiling point | 150.2 °C | 36 °C | | 99.9839 °C | 444.7 °C | density | 1.44 g/cm^3 | 0.9 g/cm^3 | 3.43 g/cm^3 | 1 g/cm^3 | 2.07 g/cm^3 | solubility in water | miscible | very soluble | | | | surface tension | 0.0804 N/m | | | 0.0728 N/m | | dynamic viscosity | 0.001249 Pa s (at 20 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | odor | | | | odorless | |
Units