Input interpretation
H_2SO_4 sulfuric acid + K_2Cr_2O_7 potassium dichromate + Hg_2SO_4 mercury(I) sulfate ⟶ H_2O water + K_2SO_4 potassium sulfate + Cr_2(SO_4)_3 chromium sulfate + HgSO_4 mercuric sulfate
Balanced equation
Balance the chemical equation algebraically: H_2SO_4 + K_2Cr_2O_7 + Hg_2SO_4 ⟶ H_2O + K_2SO_4 + Cr_2(SO_4)_3 + HgSO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 K_2Cr_2O_7 + c_3 Hg_2SO_4 ⟶ c_4 H_2O + c_5 K_2SO_4 + c_6 Cr_2(SO_4)_3 + c_7 HgSO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Cr, K and Hg: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 7 c_2 + 4 c_3 = c_4 + 4 c_5 + 12 c_6 + 4 c_7 S: | c_1 + c_3 = c_5 + 3 c_6 + c_7 Cr: | 2 c_2 = 2 c_6 K: | 2 c_2 = 2 c_5 Hg: | 2 c_3 = c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_2 = 1 and solve the system of equations for the remaining coefficients: c_1 = 7 c_2 = 1 c_3 = 3 c_4 = 7 c_5 = 1 c_6 = 1 c_7 = 6 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 7 H_2SO_4 + K_2Cr_2O_7 + 3 Hg_2SO_4 ⟶ 7 H_2O + K_2SO_4 + Cr_2(SO_4)_3 + 6 HgSO_4
Structures
+ + ⟶ + + +
Names
sulfuric acid + potassium dichromate + mercury(I) sulfate ⟶ water + potassium sulfate + chromium sulfate + mercuric sulfate
Equilibrium constant
Construct the equilibrium constant, K, expression for: H_2SO_4 + K_2Cr_2O_7 + Hg_2SO_4 ⟶ H_2O + K_2SO_4 + Cr_2(SO_4)_3 + HgSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 7 H_2SO_4 + K_2Cr_2O_7 + 3 Hg_2SO_4 ⟶ 7 H_2O + K_2SO_4 + Cr_2(SO_4)_3 + 6 HgSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 7 | -7 K_2Cr_2O_7 | 1 | -1 Hg_2SO_4 | 3 | -3 H_2O | 7 | 7 K_2SO_4 | 1 | 1 Cr_2(SO_4)_3 | 1 | 1 HgSO_4 | 6 | 6 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 7 | -7 | ([H2SO4])^(-7) K_2Cr_2O_7 | 1 | -1 | ([K2Cr2O7])^(-1) Hg_2SO_4 | 3 | -3 | ([Hg2SO4])^(-3) H_2O | 7 | 7 | ([H2O])^7 K_2SO_4 | 1 | 1 | [K2SO4] Cr_2(SO_4)_3 | 1 | 1 | [Cr2(SO4)3] HgSO_4 | 6 | 6 | ([HgSO4])^6 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-7) ([K2Cr2O7])^(-1) ([Hg2SO4])^(-3) ([H2O])^7 [K2SO4] [Cr2(SO4)3] ([HgSO4])^6 = (([H2O])^7 [K2SO4] [Cr2(SO4)3] ([HgSO4])^6)/(([H2SO4])^7 [K2Cr2O7] ([Hg2SO4])^3)
Rate of reaction
Construct the rate of reaction expression for: H_2SO_4 + K_2Cr_2O_7 + Hg_2SO_4 ⟶ H_2O + K_2SO_4 + Cr_2(SO_4)_3 + HgSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 7 H_2SO_4 + K_2Cr_2O_7 + 3 Hg_2SO_4 ⟶ 7 H_2O + K_2SO_4 + Cr_2(SO_4)_3 + 6 HgSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 7 | -7 K_2Cr_2O_7 | 1 | -1 Hg_2SO_4 | 3 | -3 H_2O | 7 | 7 K_2SO_4 | 1 | 1 Cr_2(SO_4)_3 | 1 | 1 HgSO_4 | 6 | 6 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 7 | -7 | -1/7 (Δ[H2SO4])/(Δt) K_2Cr_2O_7 | 1 | -1 | -(Δ[K2Cr2O7])/(Δt) Hg_2SO_4 | 3 | -3 | -1/3 (Δ[Hg2SO4])/(Δt) H_2O | 7 | 7 | 1/7 (Δ[H2O])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) Cr_2(SO_4)_3 | 1 | 1 | (Δ[Cr2(SO4)3])/(Δt) HgSO_4 | 6 | 6 | 1/6 (Δ[HgSO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/7 (Δ[H2SO4])/(Δt) = -(Δ[K2Cr2O7])/(Δt) = -1/3 (Δ[Hg2SO4])/(Δt) = 1/7 (Δ[H2O])/(Δt) = (Δ[K2SO4])/(Δt) = (Δ[Cr2(SO4)3])/(Δt) = 1/6 (Δ[HgSO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Chemical names and formulas
| sulfuric acid | potassium dichromate | mercury(I) sulfate | water | potassium sulfate | chromium sulfate | mercuric sulfate formula | H_2SO_4 | K_2Cr_2O_7 | Hg_2SO_4 | H_2O | K_2SO_4 | Cr_2(SO_4)_3 | HgSO_4 Hill formula | H_2O_4S | Cr_2K_2O_7 | Hg_2O_4S | H_2O | K_2O_4S | Cr_2O_12S_3 | HgO_4S name | sulfuric acid | potassium dichromate | mercury(I) sulfate | water | potassium sulfate | chromium sulfate | mercuric sulfate IUPAC name | sulfuric acid | dipotassium oxido-(oxido-dioxochromio)oxy-dioxochromium | dimercurous sulfate | water | dipotassium sulfate | chromium(+3) cation trisulfate | mercury(+2) cation sulfate