Search

H2O + H2SO4 + K4Fe(CN)6 = K2SO4 + FeSO4 + CO + (NH4)2SO4

Input interpretation

H_2O water + H_2SO_4 sulfuric acid + K4Fe(CN)6 ⟶ K_2SO_4 potassium sulfate + FeSO_4 duretter + CO carbon monoxide + (NH_4)_2SO_4 ammonium sulfate
H_2O water + H_2SO_4 sulfuric acid + K4Fe(CN)6 ⟶ K_2SO_4 potassium sulfate + FeSO_4 duretter + CO carbon monoxide + (NH_4)_2SO_4 ammonium sulfate

Balanced equation

Balance the chemical equation algebraically: H_2O + H_2SO_4 + K4Fe(CN)6 ⟶ K_2SO_4 + FeSO_4 + CO + (NH_4)_2SO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 H_2SO_4 + c_3 K4Fe(CN)6 ⟶ c_4 K_2SO_4 + c_5 FeSO_4 + c_6 CO + c_7 (NH_4)_2SO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K, Fe, C and N: H: | 2 c_1 + 2 c_2 = 8 c_7 O: | c_1 + 4 c_2 = 4 c_4 + 4 c_5 + c_6 + 4 c_7 S: | c_2 = c_4 + c_5 + c_7 K: | 4 c_3 = 2 c_4 Fe: | c_3 = c_5 C: | 6 c_3 = c_6 N: | 6 c_3 = 2 c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 6 c_2 = 6 c_3 = 1 c_4 = 2 c_5 = 1 c_6 = 6 c_7 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 6 H_2O + 6 H_2SO_4 + K4Fe(CN)6 ⟶ 2 K_2SO_4 + FeSO_4 + 6 CO + 3 (NH_4)_2SO_4
Balance the chemical equation algebraically: H_2O + H_2SO_4 + K4Fe(CN)6 ⟶ K_2SO_4 + FeSO_4 + CO + (NH_4)_2SO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 H_2SO_4 + c_3 K4Fe(CN)6 ⟶ c_4 K_2SO_4 + c_5 FeSO_4 + c_6 CO + c_7 (NH_4)_2SO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K, Fe, C and N: H: | 2 c_1 + 2 c_2 = 8 c_7 O: | c_1 + 4 c_2 = 4 c_4 + 4 c_5 + c_6 + 4 c_7 S: | c_2 = c_4 + c_5 + c_7 K: | 4 c_3 = 2 c_4 Fe: | c_3 = c_5 C: | 6 c_3 = c_6 N: | 6 c_3 = 2 c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 6 c_2 = 6 c_3 = 1 c_4 = 2 c_5 = 1 c_6 = 6 c_7 = 3 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 6 H_2O + 6 H_2SO_4 + K4Fe(CN)6 ⟶ 2 K_2SO_4 + FeSO_4 + 6 CO + 3 (NH_4)_2SO_4

Structures

 + + K4Fe(CN)6 ⟶ + + +
+ + K4Fe(CN)6 ⟶ + + +

Names

water + sulfuric acid + K4Fe(CN)6 ⟶ potassium sulfate + duretter + carbon monoxide + ammonium sulfate
water + sulfuric acid + K4Fe(CN)6 ⟶ potassium sulfate + duretter + carbon monoxide + ammonium sulfate

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2O + H_2SO_4 + K4Fe(CN)6 ⟶ K_2SO_4 + FeSO_4 + CO + (NH_4)_2SO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 H_2O + 6 H_2SO_4 + K4Fe(CN)6 ⟶ 2 K_2SO_4 + FeSO_4 + 6 CO + 3 (NH_4)_2SO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 6 | -6 H_2SO_4 | 6 | -6 K4Fe(CN)6 | 1 | -1 K_2SO_4 | 2 | 2 FeSO_4 | 1 | 1 CO | 6 | 6 (NH_4)_2SO_4 | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 6 | -6 | ([H2O])^(-6) H_2SO_4 | 6 | -6 | ([H2SO4])^(-6) K4Fe(CN)6 | 1 | -1 | ([K4Fe(CN)6])^(-1) K_2SO_4 | 2 | 2 | ([K2SO4])^2 FeSO_4 | 1 | 1 | [FeSO4] CO | 6 | 6 | ([CO])^6 (NH_4)_2SO_4 | 3 | 3 | ([(NH4)2SO4])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2O])^(-6) ([H2SO4])^(-6) ([K4Fe(CN)6])^(-1) ([K2SO4])^2 [FeSO4] ([CO])^6 ([(NH4)2SO4])^3 = (([K2SO4])^2 [FeSO4] ([CO])^6 ([(NH4)2SO4])^3)/(([H2O])^6 ([H2SO4])^6 [K4Fe(CN)6])
Construct the equilibrium constant, K, expression for: H_2O + H_2SO_4 + K4Fe(CN)6 ⟶ K_2SO_4 + FeSO_4 + CO + (NH_4)_2SO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 6 H_2O + 6 H_2SO_4 + K4Fe(CN)6 ⟶ 2 K_2SO_4 + FeSO_4 + 6 CO + 3 (NH_4)_2SO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 6 | -6 H_2SO_4 | 6 | -6 K4Fe(CN)6 | 1 | -1 K_2SO_4 | 2 | 2 FeSO_4 | 1 | 1 CO | 6 | 6 (NH_4)_2SO_4 | 3 | 3 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 6 | -6 | ([H2O])^(-6) H_2SO_4 | 6 | -6 | ([H2SO4])^(-6) K4Fe(CN)6 | 1 | -1 | ([K4Fe(CN)6])^(-1) K_2SO_4 | 2 | 2 | ([K2SO4])^2 FeSO_4 | 1 | 1 | [FeSO4] CO | 6 | 6 | ([CO])^6 (NH_4)_2SO_4 | 3 | 3 | ([(NH4)2SO4])^3 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2O])^(-6) ([H2SO4])^(-6) ([K4Fe(CN)6])^(-1) ([K2SO4])^2 [FeSO4] ([CO])^6 ([(NH4)2SO4])^3 = (([K2SO4])^2 [FeSO4] ([CO])^6 ([(NH4)2SO4])^3)/(([H2O])^6 ([H2SO4])^6 [K4Fe(CN)6])

Rate of reaction

Construct the rate of reaction expression for: H_2O + H_2SO_4 + K4Fe(CN)6 ⟶ K_2SO_4 + FeSO_4 + CO + (NH_4)_2SO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 H_2O + 6 H_2SO_4 + K4Fe(CN)6 ⟶ 2 K_2SO_4 + FeSO_4 + 6 CO + 3 (NH_4)_2SO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 6 | -6 H_2SO_4 | 6 | -6 K4Fe(CN)6 | 1 | -1 K_2SO_4 | 2 | 2 FeSO_4 | 1 | 1 CO | 6 | 6 (NH_4)_2SO_4 | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 6 | -6 | -1/6 (Δ[H2O])/(Δt) H_2SO_4 | 6 | -6 | -1/6 (Δ[H2SO4])/(Δt) K4Fe(CN)6 | 1 | -1 | -(Δ[K4Fe(CN)6])/(Δt) K_2SO_4 | 2 | 2 | 1/2 (Δ[K2SO4])/(Δt) FeSO_4 | 1 | 1 | (Δ[FeSO4])/(Δt) CO | 6 | 6 | 1/6 (Δ[CO])/(Δt) (NH_4)_2SO_4 | 3 | 3 | 1/3 (Δ[(NH4)2SO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/6 (Δ[H2O])/(Δt) = -1/6 (Δ[H2SO4])/(Δt) = -(Δ[K4Fe(CN)6])/(Δt) = 1/2 (Δ[K2SO4])/(Δt) = (Δ[FeSO4])/(Δt) = 1/6 (Δ[CO])/(Δt) = 1/3 (Δ[(NH4)2SO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2O + H_2SO_4 + K4Fe(CN)6 ⟶ K_2SO_4 + FeSO_4 + CO + (NH_4)_2SO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 6 H_2O + 6 H_2SO_4 + K4Fe(CN)6 ⟶ 2 K_2SO_4 + FeSO_4 + 6 CO + 3 (NH_4)_2SO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 6 | -6 H_2SO_4 | 6 | -6 K4Fe(CN)6 | 1 | -1 K_2SO_4 | 2 | 2 FeSO_4 | 1 | 1 CO | 6 | 6 (NH_4)_2SO_4 | 3 | 3 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 6 | -6 | -1/6 (Δ[H2O])/(Δt) H_2SO_4 | 6 | -6 | -1/6 (Δ[H2SO4])/(Δt) K4Fe(CN)6 | 1 | -1 | -(Δ[K4Fe(CN)6])/(Δt) K_2SO_4 | 2 | 2 | 1/2 (Δ[K2SO4])/(Δt) FeSO_4 | 1 | 1 | (Δ[FeSO4])/(Δt) CO | 6 | 6 | 1/6 (Δ[CO])/(Δt) (NH_4)_2SO_4 | 3 | 3 | 1/3 (Δ[(NH4)2SO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/6 (Δ[H2O])/(Δt) = -1/6 (Δ[H2SO4])/(Δt) = -(Δ[K4Fe(CN)6])/(Δt) = 1/2 (Δ[K2SO4])/(Δt) = (Δ[FeSO4])/(Δt) = 1/6 (Δ[CO])/(Δt) = 1/3 (Δ[(NH4)2SO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | water | sulfuric acid | K4Fe(CN)6 | potassium sulfate | duretter | carbon monoxide | ammonium sulfate formula | H_2O | H_2SO_4 | K4Fe(CN)6 | K_2SO_4 | FeSO_4 | CO | (NH_4)_2SO_4 Hill formula | H_2O | H_2O_4S | C6FeK4N6 | K_2O_4S | FeO_4S | CO | H_8N_2O_4S name | water | sulfuric acid | | potassium sulfate | duretter | carbon monoxide | ammonium sulfate IUPAC name | water | sulfuric acid | | dipotassium sulfate | iron(+2) cation sulfate | carbon monoxide |
| water | sulfuric acid | K4Fe(CN)6 | potassium sulfate | duretter | carbon monoxide | ammonium sulfate formula | H_2O | H_2SO_4 | K4Fe(CN)6 | K_2SO_4 | FeSO_4 | CO | (NH_4)_2SO_4 Hill formula | H_2O | H_2O_4S | C6FeK4N6 | K_2O_4S | FeO_4S | CO | H_8N_2O_4S name | water | sulfuric acid | | potassium sulfate | duretter | carbon monoxide | ammonium sulfate IUPAC name | water | sulfuric acid | | dipotassium sulfate | iron(+2) cation sulfate | carbon monoxide |