Input interpretation
H_2O water + NaNO_3 sodium nitrate + Na_2CO_3 soda ash + As_2S_3 arsenic(III) sulfide ⟶ CO_2 carbon dioxide + NaNO_2 sodium nitrite + NaHSO_4 sodium bisulfate + AsNa_3O_4 arsenic acid, trisodium salt
Balanced equation
Balance the chemical equation algebraically: H_2O + NaNO_3 + Na_2CO_3 + As_2S_3 ⟶ CO_2 + NaNO_2 + NaHSO_4 + AsNa_3O_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2O + c_2 NaNO_3 + c_3 Na_2CO_3 + c_4 As_2S_3 ⟶ c_5 CO_2 + c_6 NaNO_2 + c_7 NaHSO_4 + c_8 AsNa_3O_4 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, N, Na, C, As and S: H: | 2 c_1 = c_7 O: | c_1 + 3 c_2 + 3 c_3 = 2 c_5 + 2 c_6 + 4 c_7 + 4 c_8 N: | c_2 = c_6 Na: | c_2 + 2 c_3 = c_6 + c_7 + 3 c_8 C: | c_3 = c_5 As: | 2 c_4 = c_8 S: | 3 c_4 = c_7 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_4 = 1 and solve the system of equations for the remaining coefficients: c_1 = 3/2 c_2 = 14 c_3 = 9/2 c_4 = 1 c_5 = 9/2 c_6 = 14 c_7 = 3 c_8 = 2 Multiply by the least common denominator, 2, to eliminate fractional coefficients: c_1 = 3 c_2 = 28 c_3 = 9 c_4 = 2 c_5 = 9 c_6 = 28 c_7 = 6 c_8 = 4 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 3 H_2O + 28 NaNO_3 + 9 Na_2CO_3 + 2 As_2S_3 ⟶ 9 CO_2 + 28 NaNO_2 + 6 NaHSO_4 + 4 AsNa_3O_4
Structures
+ + + ⟶ + + +
Names
water + sodium nitrate + soda ash + arsenic(III) sulfide ⟶ carbon dioxide + sodium nitrite + sodium bisulfate + arsenic acid, trisodium salt
Equilibrium constant
Construct the equilibrium constant, K, expression for: H_2O + NaNO_3 + Na_2CO_3 + As_2S_3 ⟶ CO_2 + NaNO_2 + NaHSO_4 + AsNa_3O_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 3 H_2O + 28 NaNO_3 + 9 Na_2CO_3 + 2 As_2S_3 ⟶ 9 CO_2 + 28 NaNO_2 + 6 NaHSO_4 + 4 AsNa_3O_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 3 | -3 NaNO_3 | 28 | -28 Na_2CO_3 | 9 | -9 As_2S_3 | 2 | -2 CO_2 | 9 | 9 NaNO_2 | 28 | 28 NaHSO_4 | 6 | 6 AsNa_3O_4 | 4 | 4 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2O | 3 | -3 | ([H2O])^(-3) NaNO_3 | 28 | -28 | ([NaNO3])^(-28) Na_2CO_3 | 9 | -9 | ([Na2CO3])^(-9) As_2S_3 | 2 | -2 | ([As2S3])^(-2) CO_2 | 9 | 9 | ([CO2])^9 NaNO_2 | 28 | 28 | ([NaNO2])^28 NaHSO_4 | 6 | 6 | ([NaHSO4])^6 AsNa_3O_4 | 4 | 4 | ([AsNa3O4])^4 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2O])^(-3) ([NaNO3])^(-28) ([Na2CO3])^(-9) ([As2S3])^(-2) ([CO2])^9 ([NaNO2])^28 ([NaHSO4])^6 ([AsNa3O4])^4 = (([CO2])^9 ([NaNO2])^28 ([NaHSO4])^6 ([AsNa3O4])^4)/(([H2O])^3 ([NaNO3])^28 ([Na2CO3])^9 ([As2S3])^2)
Rate of reaction
Construct the rate of reaction expression for: H_2O + NaNO_3 + Na_2CO_3 + As_2S_3 ⟶ CO_2 + NaNO_2 + NaHSO_4 + AsNa_3O_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 3 H_2O + 28 NaNO_3 + 9 Na_2CO_3 + 2 As_2S_3 ⟶ 9 CO_2 + 28 NaNO_2 + 6 NaHSO_4 + 4 AsNa_3O_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2O | 3 | -3 NaNO_3 | 28 | -28 Na_2CO_3 | 9 | -9 As_2S_3 | 2 | -2 CO_2 | 9 | 9 NaNO_2 | 28 | 28 NaHSO_4 | 6 | 6 AsNa_3O_4 | 4 | 4 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2O | 3 | -3 | -1/3 (Δ[H2O])/(Δt) NaNO_3 | 28 | -28 | -1/28 (Δ[NaNO3])/(Δt) Na_2CO_3 | 9 | -9 | -1/9 (Δ[Na2CO3])/(Δt) As_2S_3 | 2 | -2 | -1/2 (Δ[As2S3])/(Δt) CO_2 | 9 | 9 | 1/9 (Δ[CO2])/(Δt) NaNO_2 | 28 | 28 | 1/28 (Δ[NaNO2])/(Δt) NaHSO_4 | 6 | 6 | 1/6 (Δ[NaHSO4])/(Δt) AsNa_3O_4 | 4 | 4 | 1/4 (Δ[AsNa3O4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/3 (Δ[H2O])/(Δt) = -1/28 (Δ[NaNO3])/(Δt) = -1/9 (Δ[Na2CO3])/(Δt) = -1/2 (Δ[As2S3])/(Δt) = 1/9 (Δ[CO2])/(Δt) = 1/28 (Δ[NaNO2])/(Δt) = 1/6 (Δ[NaHSO4])/(Δt) = 1/4 (Δ[AsNa3O4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Chemical names and formulas
| water | sodium nitrate | soda ash | arsenic(III) sulfide | carbon dioxide | sodium nitrite | sodium bisulfate | arsenic acid, trisodium salt formula | H_2O | NaNO_3 | Na_2CO_3 | As_2S_3 | CO_2 | NaNO_2 | NaHSO_4 | AsNa_3O_4 Hill formula | H_2O | NNaO_3 | CNa_2O_3 | As_2S_3 | CO_2 | NNaO_2 | HNaO_4S | AsNa_3O_4 name | water | sodium nitrate | soda ash | arsenic(III) sulfide | carbon dioxide | sodium nitrite | sodium bisulfate | arsenic acid, trisodium salt IUPAC name | water | sodium nitrate | disodium carbonate | | carbon dioxide | sodium nitrite | |