Search

Na2SO4 + SrCl2 = NaCl + SrSO4

Input interpretation

Na_2SO_4 sodium sulfate + SrCl_2 strontium chloride ⟶ NaCl sodium chloride + SrSO_4 strontium sulfate
Na_2SO_4 sodium sulfate + SrCl_2 strontium chloride ⟶ NaCl sodium chloride + SrSO_4 strontium sulfate

Balanced equation

Balance the chemical equation algebraically: Na_2SO_4 + SrCl_2 ⟶ NaCl + SrSO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Na_2SO_4 + c_2 SrCl_2 ⟶ c_3 NaCl + c_4 SrSO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for Na, O, S, Cl and Sr: Na: | 2 c_1 = c_3 O: | 4 c_1 = 4 c_4 S: | c_1 = c_4 Cl: | 2 c_2 = c_3 Sr: | c_2 = c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 2 c_4 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | Na_2SO_4 + SrCl_2 ⟶ 2 NaCl + SrSO_4
Balance the chemical equation algebraically: Na_2SO_4 + SrCl_2 ⟶ NaCl + SrSO_4 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Na_2SO_4 + c_2 SrCl_2 ⟶ c_3 NaCl + c_4 SrSO_4 Set the number of atoms in the reactants equal to the number of atoms in the products for Na, O, S, Cl and Sr: Na: | 2 c_1 = c_3 O: | 4 c_1 = 4 c_4 S: | c_1 = c_4 Cl: | 2 c_2 = c_3 Sr: | c_2 = c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 2 c_4 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | Na_2SO_4 + SrCl_2 ⟶ 2 NaCl + SrSO_4

Structures

 + ⟶ +
+ ⟶ +

Names

sodium sulfate + strontium chloride ⟶ sodium chloride + strontium sulfate
sodium sulfate + strontium chloride ⟶ sodium chloride + strontium sulfate

Reaction thermodynamics

Enthalpy

 | sodium sulfate | strontium chloride | sodium chloride | strontium sulfate molecular enthalpy | -1387 kJ/mol | -828.9 kJ/mol | -411.2 kJ/mol | -1453 kJ/mol total enthalpy | -1387 kJ/mol | -828.9 kJ/mol | -822.4 kJ/mol | -1453 kJ/mol  | H_initial = -2216 kJ/mol | | H_final = -2276 kJ/mol |  ΔH_rxn^0 | -2276 kJ/mol - -2216 kJ/mol = -59.5 kJ/mol (exothermic) | | |
| sodium sulfate | strontium chloride | sodium chloride | strontium sulfate molecular enthalpy | -1387 kJ/mol | -828.9 kJ/mol | -411.2 kJ/mol | -1453 kJ/mol total enthalpy | -1387 kJ/mol | -828.9 kJ/mol | -822.4 kJ/mol | -1453 kJ/mol | H_initial = -2216 kJ/mol | | H_final = -2276 kJ/mol | ΔH_rxn^0 | -2276 kJ/mol - -2216 kJ/mol = -59.5 kJ/mol (exothermic) | | |

Gibbs free energy

 | sodium sulfate | strontium chloride | sodium chloride | strontium sulfate molecular free energy | -1270 kJ/mol | -781.1 kJ/mol | -384.1 kJ/mol | -1341 kJ/mol total free energy | -1270 kJ/mol | -781.1 kJ/mol | -768.2 kJ/mol | -1341 kJ/mol  | G_initial = -2051 kJ/mol | | G_final = -2109 kJ/mol |  ΔG_rxn^0 | -2109 kJ/mol - -2051 kJ/mol = -57.8 kJ/mol (exergonic) | | |
| sodium sulfate | strontium chloride | sodium chloride | strontium sulfate molecular free energy | -1270 kJ/mol | -781.1 kJ/mol | -384.1 kJ/mol | -1341 kJ/mol total free energy | -1270 kJ/mol | -781.1 kJ/mol | -768.2 kJ/mol | -1341 kJ/mol | G_initial = -2051 kJ/mol | | G_final = -2109 kJ/mol | ΔG_rxn^0 | -2109 kJ/mol - -2051 kJ/mol = -57.8 kJ/mol (exergonic) | | |

Equilibrium constant

Construct the equilibrium constant, K, expression for: Na_2SO_4 + SrCl_2 ⟶ NaCl + SrSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: Na_2SO_4 + SrCl_2 ⟶ 2 NaCl + SrSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Na_2SO_4 | 1 | -1 SrCl_2 | 1 | -1 NaCl | 2 | 2 SrSO_4 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Na_2SO_4 | 1 | -1 | ([Na2SO4])^(-1) SrCl_2 | 1 | -1 | ([SrCl2])^(-1) NaCl | 2 | 2 | ([NaCl])^2 SrSO_4 | 1 | 1 | [SrSO4] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([Na2SO4])^(-1) ([SrCl2])^(-1) ([NaCl])^2 [SrSO4] = (([NaCl])^2 [SrSO4])/([Na2SO4] [SrCl2])
Construct the equilibrium constant, K, expression for: Na_2SO_4 + SrCl_2 ⟶ NaCl + SrSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: Na_2SO_4 + SrCl_2 ⟶ 2 NaCl + SrSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Na_2SO_4 | 1 | -1 SrCl_2 | 1 | -1 NaCl | 2 | 2 SrSO_4 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Na_2SO_4 | 1 | -1 | ([Na2SO4])^(-1) SrCl_2 | 1 | -1 | ([SrCl2])^(-1) NaCl | 2 | 2 | ([NaCl])^2 SrSO_4 | 1 | 1 | [SrSO4] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([Na2SO4])^(-1) ([SrCl2])^(-1) ([NaCl])^2 [SrSO4] = (([NaCl])^2 [SrSO4])/([Na2SO4] [SrCl2])

Rate of reaction

Construct the rate of reaction expression for: Na_2SO_4 + SrCl_2 ⟶ NaCl + SrSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: Na_2SO_4 + SrCl_2 ⟶ 2 NaCl + SrSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Na_2SO_4 | 1 | -1 SrCl_2 | 1 | -1 NaCl | 2 | 2 SrSO_4 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Na_2SO_4 | 1 | -1 | -(Δ[Na2SO4])/(Δt) SrCl_2 | 1 | -1 | -(Δ[SrCl2])/(Δt) NaCl | 2 | 2 | 1/2 (Δ[NaCl])/(Δt) SrSO_4 | 1 | 1 | (Δ[SrSO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -(Δ[Na2SO4])/(Δt) = -(Δ[SrCl2])/(Δt) = 1/2 (Δ[NaCl])/(Δt) = (Δ[SrSO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: Na_2SO_4 + SrCl_2 ⟶ NaCl + SrSO_4 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: Na_2SO_4 + SrCl_2 ⟶ 2 NaCl + SrSO_4 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Na_2SO_4 | 1 | -1 SrCl_2 | 1 | -1 NaCl | 2 | 2 SrSO_4 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Na_2SO_4 | 1 | -1 | -(Δ[Na2SO4])/(Δt) SrCl_2 | 1 | -1 | -(Δ[SrCl2])/(Δt) NaCl | 2 | 2 | 1/2 (Δ[NaCl])/(Δt) SrSO_4 | 1 | 1 | (Δ[SrSO4])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[Na2SO4])/(Δt) = -(Δ[SrCl2])/(Δt) = 1/2 (Δ[NaCl])/(Δt) = (Δ[SrSO4])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sodium sulfate | strontium chloride | sodium chloride | strontium sulfate formula | Na_2SO_4 | SrCl_2 | NaCl | SrSO_4 Hill formula | Na_2O_4S | Cl_2Sr | ClNa | O_4SSr name | sodium sulfate | strontium chloride | sodium chloride | strontium sulfate IUPAC name | disodium sulfate | strontium dichloride | sodium chloride | strontium sulfate
| sodium sulfate | strontium chloride | sodium chloride | strontium sulfate formula | Na_2SO_4 | SrCl_2 | NaCl | SrSO_4 Hill formula | Na_2O_4S | Cl_2Sr | ClNa | O_4SSr name | sodium sulfate | strontium chloride | sodium chloride | strontium sulfate IUPAC name | disodium sulfate | strontium dichloride | sodium chloride | strontium sulfate

Substance properties

 | sodium sulfate | strontium chloride | sodium chloride | strontium sulfate molar mass | 142.04 g/mol | 158.5 g/mol | 58.44 g/mol | 183.7 g/mol phase | solid (at STP) | solid (at STP) | solid (at STP) | solid (at STP) melting point | 884 °C | 874 °C | 801 °C | 1605 °C boiling point | 1429 °C | | 1413 °C |  density | 2.68 g/cm^3 | 3 g/cm^3 | 2.16 g/cm^3 | 3.96 g/cm^3 solubility in water | soluble | | soluble |  odor | | | odorless |
| sodium sulfate | strontium chloride | sodium chloride | strontium sulfate molar mass | 142.04 g/mol | 158.5 g/mol | 58.44 g/mol | 183.7 g/mol phase | solid (at STP) | solid (at STP) | solid (at STP) | solid (at STP) melting point | 884 °C | 874 °C | 801 °C | 1605 °C boiling point | 1429 °C | | 1413 °C | density | 2.68 g/cm^3 | 3 g/cm^3 | 2.16 g/cm^3 | 3.96 g/cm^3 solubility in water | soluble | | soluble | odor | | | odorless |

Units