Search

FeCl2 + Na2SiO3 = NaCl + FeSiO3

Input interpretation

FeCl_2 iron(II) chloride + Na_2SiO_3 sodium metasilicate ⟶ NaCl sodium chloride + FeSiO3
FeCl_2 iron(II) chloride + Na_2SiO_3 sodium metasilicate ⟶ NaCl sodium chloride + FeSiO3

Balanced equation

Balance the chemical equation algebraically: FeCl_2 + Na_2SiO_3 ⟶ NaCl + FeSiO3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 FeCl_2 + c_2 Na_2SiO_3 ⟶ c_3 NaCl + c_4 FeSiO3 Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, Fe, Na, O and Si: Cl: | 2 c_1 = c_3 Fe: | c_1 = c_4 Na: | 2 c_2 = c_3 O: | 3 c_2 = 3 c_4 Si: | c_2 = c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 2 c_4 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | FeCl_2 + Na_2SiO_3 ⟶ 2 NaCl + FeSiO3
Balance the chemical equation algebraically: FeCl_2 + Na_2SiO_3 ⟶ NaCl + FeSiO3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 FeCl_2 + c_2 Na_2SiO_3 ⟶ c_3 NaCl + c_4 FeSiO3 Set the number of atoms in the reactants equal to the number of atoms in the products for Cl, Fe, Na, O and Si: Cl: | 2 c_1 = c_3 Fe: | c_1 = c_4 Na: | 2 c_2 = c_3 O: | 3 c_2 = 3 c_4 Si: | c_2 = c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 1 c_3 = 2 c_4 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | FeCl_2 + Na_2SiO_3 ⟶ 2 NaCl + FeSiO3

Structures

 + ⟶ + FeSiO3
+ ⟶ + FeSiO3

Names

iron(II) chloride + sodium metasilicate ⟶ sodium chloride + FeSiO3
iron(II) chloride + sodium metasilicate ⟶ sodium chloride + FeSiO3

Equilibrium constant

Construct the equilibrium constant, K, expression for: FeCl_2 + Na_2SiO_3 ⟶ NaCl + FeSiO3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: FeCl_2 + Na_2SiO_3 ⟶ 2 NaCl + FeSiO3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeCl_2 | 1 | -1 Na_2SiO_3 | 1 | -1 NaCl | 2 | 2 FeSiO3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression FeCl_2 | 1 | -1 | ([FeCl2])^(-1) Na_2SiO_3 | 1 | -1 | ([Na2SiO3])^(-1) NaCl | 2 | 2 | ([NaCl])^2 FeSiO3 | 1 | 1 | [FeSiO3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([FeCl2])^(-1) ([Na2SiO3])^(-1) ([NaCl])^2 [FeSiO3] = (([NaCl])^2 [FeSiO3])/([FeCl2] [Na2SiO3])
Construct the equilibrium constant, K, expression for: FeCl_2 + Na_2SiO_3 ⟶ NaCl + FeSiO3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: FeCl_2 + Na_2SiO_3 ⟶ 2 NaCl + FeSiO3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeCl_2 | 1 | -1 Na_2SiO_3 | 1 | -1 NaCl | 2 | 2 FeSiO3 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression FeCl_2 | 1 | -1 | ([FeCl2])^(-1) Na_2SiO_3 | 1 | -1 | ([Na2SiO3])^(-1) NaCl | 2 | 2 | ([NaCl])^2 FeSiO3 | 1 | 1 | [FeSiO3] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([FeCl2])^(-1) ([Na2SiO3])^(-1) ([NaCl])^2 [FeSiO3] = (([NaCl])^2 [FeSiO3])/([FeCl2] [Na2SiO3])

Rate of reaction

Construct the rate of reaction expression for: FeCl_2 + Na_2SiO_3 ⟶ NaCl + FeSiO3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: FeCl_2 + Na_2SiO_3 ⟶ 2 NaCl + FeSiO3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeCl_2 | 1 | -1 Na_2SiO_3 | 1 | -1 NaCl | 2 | 2 FeSiO3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term FeCl_2 | 1 | -1 | -(Δ[FeCl2])/(Δt) Na_2SiO_3 | 1 | -1 | -(Δ[Na2SiO3])/(Δt) NaCl | 2 | 2 | 1/2 (Δ[NaCl])/(Δt) FeSiO3 | 1 | 1 | (Δ[FeSiO3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -(Δ[FeCl2])/(Δt) = -(Δ[Na2SiO3])/(Δt) = 1/2 (Δ[NaCl])/(Δt) = (Δ[FeSiO3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: FeCl_2 + Na_2SiO_3 ⟶ NaCl + FeSiO3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: FeCl_2 + Na_2SiO_3 ⟶ 2 NaCl + FeSiO3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeCl_2 | 1 | -1 Na_2SiO_3 | 1 | -1 NaCl | 2 | 2 FeSiO3 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term FeCl_2 | 1 | -1 | -(Δ[FeCl2])/(Δt) Na_2SiO_3 | 1 | -1 | -(Δ[Na2SiO3])/(Δt) NaCl | 2 | 2 | 1/2 (Δ[NaCl])/(Δt) FeSiO3 | 1 | 1 | (Δ[FeSiO3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[FeCl2])/(Δt) = -(Δ[Na2SiO3])/(Δt) = 1/2 (Δ[NaCl])/(Δt) = (Δ[FeSiO3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | iron(II) chloride | sodium metasilicate | sodium chloride | FeSiO3 formula | FeCl_2 | Na_2SiO_3 | NaCl | FeSiO3 Hill formula | Cl_2Fe | Na_2O_3Si | ClNa | FeO3Si name | iron(II) chloride | sodium metasilicate | sodium chloride |  IUPAC name | dichloroiron | disodium dioxido-oxosilane | sodium chloride |
| iron(II) chloride | sodium metasilicate | sodium chloride | FeSiO3 formula | FeCl_2 | Na_2SiO_3 | NaCl | FeSiO3 Hill formula | Cl_2Fe | Na_2O_3Si | ClNa | FeO3Si name | iron(II) chloride | sodium metasilicate | sodium chloride | IUPAC name | dichloroiron | disodium dioxido-oxosilane | sodium chloride |

Substance properties

 | iron(II) chloride | sodium metasilicate | sodium chloride | FeSiO3 molar mass | 126.7 g/mol | 122.06 g/mol | 58.44 g/mol | 131.93 g/mol phase | solid (at STP) | solid (at STP) | solid (at STP) |  melting point | 677 °C | 72.2 °C | 801 °C |  boiling point | | | 1413 °C |  density | 3.16 g/cm^3 | 1.749 g/cm^3 | 2.16 g/cm^3 |  solubility in water | | soluble | soluble |  dynamic viscosity | | 1 Pa s (at 1088 °C) | |  odor | | | odorless |
| iron(II) chloride | sodium metasilicate | sodium chloride | FeSiO3 molar mass | 126.7 g/mol | 122.06 g/mol | 58.44 g/mol | 131.93 g/mol phase | solid (at STP) | solid (at STP) | solid (at STP) | melting point | 677 °C | 72.2 °C | 801 °C | boiling point | | | 1413 °C | density | 3.16 g/cm^3 | 1.749 g/cm^3 | 2.16 g/cm^3 | solubility in water | | soluble | soluble | dynamic viscosity | | 1 Pa s (at 1088 °C) | | odor | | | odorless |

Units