Search

H2SO4 + KMnO4 + K2SO3 = H2O + K2SO4 + MnO2

Input interpretation

H_2SO_4 sulfuric acid + KMnO_4 potassium permanganate + K_2SO_3 potassium sulfite ⟶ H_2O water + K_2SO_4 potassium sulfate + MnO_2 manganese dioxide
H_2SO_4 sulfuric acid + KMnO_4 potassium permanganate + K_2SO_3 potassium sulfite ⟶ H_2O water + K_2SO_4 potassium sulfate + MnO_2 manganese dioxide

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + KMnO_4 + K_2SO_3 ⟶ H_2O + K_2SO_4 + MnO_2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 KMnO_4 + c_3 K_2SO_3 ⟶ c_4 H_2O + c_5 K_2SO_4 + c_6 MnO_2 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K and Mn: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 4 c_2 + 3 c_3 = c_4 + 4 c_5 + 2 c_6 S: | c_1 + c_3 = c_5 K: | c_2 + 2 c_3 = 2 c_5 Mn: | c_2 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 2 c_3 = 3 c_4 = 1 c_5 = 4 c_6 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | H_2SO_4 + 2 KMnO_4 + 3 K_2SO_3 ⟶ H_2O + 4 K_2SO_4 + 2 MnO_2
Balance the chemical equation algebraically: H_2SO_4 + KMnO_4 + K_2SO_3 ⟶ H_2O + K_2SO_4 + MnO_2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 KMnO_4 + c_3 K_2SO_3 ⟶ c_4 H_2O + c_5 K_2SO_4 + c_6 MnO_2 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K and Mn: H: | 2 c_1 = 2 c_4 O: | 4 c_1 + 4 c_2 + 3 c_3 = c_4 + 4 c_5 + 2 c_6 S: | c_1 + c_3 = c_5 K: | c_2 + 2 c_3 = 2 c_5 Mn: | c_2 = c_6 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 2 c_3 = 3 c_4 = 1 c_5 = 4 c_6 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | H_2SO_4 + 2 KMnO_4 + 3 K_2SO_3 ⟶ H_2O + 4 K_2SO_4 + 2 MnO_2

Structures

 + + ⟶ + +
+ + ⟶ + +

Names

sulfuric acid + potassium permanganate + potassium sulfite ⟶ water + potassium sulfate + manganese dioxide
sulfuric acid + potassium permanganate + potassium sulfite ⟶ water + potassium sulfate + manganese dioxide

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + KMnO_4 + K_2SO_3 ⟶ H_2O + K_2SO_4 + MnO_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: H_2SO_4 + 2 KMnO_4 + 3 K_2SO_3 ⟶ H_2O + 4 K_2SO_4 + 2 MnO_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 KMnO_4 | 2 | -2 K_2SO_3 | 3 | -3 H_2O | 1 | 1 K_2SO_4 | 4 | 4 MnO_2 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 1 | -1 | ([H2SO4])^(-1) KMnO_4 | 2 | -2 | ([KMnO4])^(-2) K_2SO_3 | 3 | -3 | ([K2SO3])^(-3) H_2O | 1 | 1 | [H2O] K_2SO_4 | 4 | 4 | ([K2SO4])^4 MnO_2 | 2 | 2 | ([MnO2])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-1) ([KMnO4])^(-2) ([K2SO3])^(-3) [H2O] ([K2SO4])^4 ([MnO2])^2 = ([H2O] ([K2SO4])^4 ([MnO2])^2)/([H2SO4] ([KMnO4])^2 ([K2SO3])^3)
Construct the equilibrium constant, K, expression for: H_2SO_4 + KMnO_4 + K_2SO_3 ⟶ H_2O + K_2SO_4 + MnO_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: H_2SO_4 + 2 KMnO_4 + 3 K_2SO_3 ⟶ H_2O + 4 K_2SO_4 + 2 MnO_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 KMnO_4 | 2 | -2 K_2SO_3 | 3 | -3 H_2O | 1 | 1 K_2SO_4 | 4 | 4 MnO_2 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 1 | -1 | ([H2SO4])^(-1) KMnO_4 | 2 | -2 | ([KMnO4])^(-2) K_2SO_3 | 3 | -3 | ([K2SO3])^(-3) H_2O | 1 | 1 | [H2O] K_2SO_4 | 4 | 4 | ([K2SO4])^4 MnO_2 | 2 | 2 | ([MnO2])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-1) ([KMnO4])^(-2) ([K2SO3])^(-3) [H2O] ([K2SO4])^4 ([MnO2])^2 = ([H2O] ([K2SO4])^4 ([MnO2])^2)/([H2SO4] ([KMnO4])^2 ([K2SO3])^3)

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + KMnO_4 + K_2SO_3 ⟶ H_2O + K_2SO_4 + MnO_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: H_2SO_4 + 2 KMnO_4 + 3 K_2SO_3 ⟶ H_2O + 4 K_2SO_4 + 2 MnO_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 KMnO_4 | 2 | -2 K_2SO_3 | 3 | -3 H_2O | 1 | 1 K_2SO_4 | 4 | 4 MnO_2 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 1 | -1 | -(Δ[H2SO4])/(Δt) KMnO_4 | 2 | -2 | -1/2 (Δ[KMnO4])/(Δt) K_2SO_3 | 3 | -3 | -1/3 (Δ[K2SO3])/(Δt) H_2O | 1 | 1 | (Δ[H2O])/(Δt) K_2SO_4 | 4 | 4 | 1/4 (Δ[K2SO4])/(Δt) MnO_2 | 2 | 2 | 1/2 (Δ[MnO2])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -(Δ[H2SO4])/(Δt) = -1/2 (Δ[KMnO4])/(Δt) = -1/3 (Δ[K2SO3])/(Δt) = (Δ[H2O])/(Δt) = 1/4 (Δ[K2SO4])/(Δt) = 1/2 (Δ[MnO2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + KMnO_4 + K_2SO_3 ⟶ H_2O + K_2SO_4 + MnO_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: H_2SO_4 + 2 KMnO_4 + 3 K_2SO_3 ⟶ H_2O + 4 K_2SO_4 + 2 MnO_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 KMnO_4 | 2 | -2 K_2SO_3 | 3 | -3 H_2O | 1 | 1 K_2SO_4 | 4 | 4 MnO_2 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 1 | -1 | -(Δ[H2SO4])/(Δt) KMnO_4 | 2 | -2 | -1/2 (Δ[KMnO4])/(Δt) K_2SO_3 | 3 | -3 | -1/3 (Δ[K2SO3])/(Δt) H_2O | 1 | 1 | (Δ[H2O])/(Δt) K_2SO_4 | 4 | 4 | 1/4 (Δ[K2SO4])/(Δt) MnO_2 | 2 | 2 | 1/2 (Δ[MnO2])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[H2SO4])/(Δt) = -1/2 (Δ[KMnO4])/(Δt) = -1/3 (Δ[K2SO3])/(Δt) = (Δ[H2O])/(Δt) = 1/4 (Δ[K2SO4])/(Δt) = 1/2 (Δ[MnO2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | potassium permanganate | potassium sulfite | water | potassium sulfate | manganese dioxide formula | H_2SO_4 | KMnO_4 | K_2SO_3 | H_2O | K_2SO_4 | MnO_2 Hill formula | H_2O_4S | KMnO_4 | K_2O_3S | H_2O | K_2O_4S | MnO_2 name | sulfuric acid | potassium permanganate | potassium sulfite | water | potassium sulfate | manganese dioxide IUPAC name | sulfuric acid | potassium permanganate | dipotassium sulfite | water | dipotassium sulfate | dioxomanganese
| sulfuric acid | potassium permanganate | potassium sulfite | water | potassium sulfate | manganese dioxide formula | H_2SO_4 | KMnO_4 | K_2SO_3 | H_2O | K_2SO_4 | MnO_2 Hill formula | H_2O_4S | KMnO_4 | K_2O_3S | H_2O | K_2O_4S | MnO_2 name | sulfuric acid | potassium permanganate | potassium sulfite | water | potassium sulfate | manganese dioxide IUPAC name | sulfuric acid | potassium permanganate | dipotassium sulfite | water | dipotassium sulfate | dioxomanganese

Substance properties

 | sulfuric acid | potassium permanganate | potassium sulfite | water | potassium sulfate | manganese dioxide molar mass | 98.07 g/mol | 158.03 g/mol | 158.25 g/mol | 18.015 g/mol | 174.25 g/mol | 86.936 g/mol phase | liquid (at STP) | solid (at STP) | | liquid (at STP) | | solid (at STP) melting point | 10.371 °C | 240 °C | | 0 °C | | 535 °C boiling point | 279.6 °C | | | 99.9839 °C | |  density | 1.8305 g/cm^3 | 1 g/cm^3 | | 1 g/cm^3 | | 5.03 g/cm^3 solubility in water | very soluble | | | | soluble | insoluble surface tension | 0.0735 N/m | | | 0.0728 N/m | |  dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | |  odor | odorless | odorless | | odorless | |
| sulfuric acid | potassium permanganate | potassium sulfite | water | potassium sulfate | manganese dioxide molar mass | 98.07 g/mol | 158.03 g/mol | 158.25 g/mol | 18.015 g/mol | 174.25 g/mol | 86.936 g/mol phase | liquid (at STP) | solid (at STP) | | liquid (at STP) | | solid (at STP) melting point | 10.371 °C | 240 °C | | 0 °C | | 535 °C boiling point | 279.6 °C | | | 99.9839 °C | | density | 1.8305 g/cm^3 | 1 g/cm^3 | | 1 g/cm^3 | | 5.03 g/cm^3 solubility in water | very soluble | | | | soluble | insoluble surface tension | 0.0735 N/m | | | 0.0728 N/m | | dynamic viscosity | 0.021 Pa s (at 25 °C) | | | 8.9×10^-4 Pa s (at 25 °C) | | odor | odorless | odorless | | odorless | |

Units