Search

H2SO4 + KMnO4 + CH3OH = H2O + CO2 + K2SO4 + MnO2

Input interpretation

H_2SO_4 sulfuric acid + KMnO_4 potassium permanganate + CH_3OH methanol ⟶ H_2O water + CO_2 carbon dioxide + K_2SO_4 potassium sulfate + MnO_2 manganese dioxide
H_2SO_4 sulfuric acid + KMnO_4 potassium permanganate + CH_3OH methanol ⟶ H_2O water + CO_2 carbon dioxide + K_2SO_4 potassium sulfate + MnO_2 manganese dioxide

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + KMnO_4 + CH_3OH ⟶ H_2O + CO_2 + K_2SO_4 + MnO_2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 KMnO_4 + c_3 CH_3OH ⟶ c_4 H_2O + c_5 CO_2 + c_6 K_2SO_4 + c_7 MnO_2 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K, Mn and C: H: | 2 c_1 + 4 c_3 = 2 c_4 O: | 4 c_1 + 4 c_2 + c_3 = c_4 + 2 c_5 + 4 c_6 + 2 c_7 S: | c_1 = c_6 K: | c_2 = 2 c_6 Mn: | c_2 = c_7 C: | c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 2 c_3 = 1 c_4 = 3 c_5 = 1 c_6 = 1 c_7 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | H_2SO_4 + 2 KMnO_4 + CH_3OH ⟶ 3 H_2O + CO_2 + K_2SO_4 + 2 MnO_2
Balance the chemical equation algebraically: H_2SO_4 + KMnO_4 + CH_3OH ⟶ H_2O + CO_2 + K_2SO_4 + MnO_2 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 KMnO_4 + c_3 CH_3OH ⟶ c_4 H_2O + c_5 CO_2 + c_6 K_2SO_4 + c_7 MnO_2 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, K, Mn and C: H: | 2 c_1 + 4 c_3 = 2 c_4 O: | 4 c_1 + 4 c_2 + c_3 = c_4 + 2 c_5 + 4 c_6 + 2 c_7 S: | c_1 = c_6 K: | c_2 = 2 c_6 Mn: | c_2 = c_7 C: | c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 2 c_3 = 1 c_4 = 3 c_5 = 1 c_6 = 1 c_7 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | H_2SO_4 + 2 KMnO_4 + CH_3OH ⟶ 3 H_2O + CO_2 + K_2SO_4 + 2 MnO_2

Structures

 + + ⟶ + + +
+ + ⟶ + + +

Names

sulfuric acid + potassium permanganate + methanol ⟶ water + carbon dioxide + potassium sulfate + manganese dioxide
sulfuric acid + potassium permanganate + methanol ⟶ water + carbon dioxide + potassium sulfate + manganese dioxide

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + KMnO_4 + CH_3OH ⟶ H_2O + CO_2 + K_2SO_4 + MnO_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: H_2SO_4 + 2 KMnO_4 + CH_3OH ⟶ 3 H_2O + CO_2 + K_2SO_4 + 2 MnO_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 KMnO_4 | 2 | -2 CH_3OH | 1 | -1 H_2O | 3 | 3 CO_2 | 1 | 1 K_2SO_4 | 1 | 1 MnO_2 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 1 | -1 | ([H2SO4])^(-1) KMnO_4 | 2 | -2 | ([KMnO4])^(-2) CH_3OH | 1 | -1 | ([CH3OH])^(-1) H_2O | 3 | 3 | ([H2O])^3 CO_2 | 1 | 1 | [CO2] K_2SO_4 | 1 | 1 | [K2SO4] MnO_2 | 2 | 2 | ([MnO2])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-1) ([KMnO4])^(-2) ([CH3OH])^(-1) ([H2O])^3 [CO2] [K2SO4] ([MnO2])^2 = (([H2O])^3 [CO2] [K2SO4] ([MnO2])^2)/([H2SO4] ([KMnO4])^2 [CH3OH])
Construct the equilibrium constant, K, expression for: H_2SO_4 + KMnO_4 + CH_3OH ⟶ H_2O + CO_2 + K_2SO_4 + MnO_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: H_2SO_4 + 2 KMnO_4 + CH_3OH ⟶ 3 H_2O + CO_2 + K_2SO_4 + 2 MnO_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 KMnO_4 | 2 | -2 CH_3OH | 1 | -1 H_2O | 3 | 3 CO_2 | 1 | 1 K_2SO_4 | 1 | 1 MnO_2 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 1 | -1 | ([H2SO4])^(-1) KMnO_4 | 2 | -2 | ([KMnO4])^(-2) CH_3OH | 1 | -1 | ([CH3OH])^(-1) H_2O | 3 | 3 | ([H2O])^3 CO_2 | 1 | 1 | [CO2] K_2SO_4 | 1 | 1 | [K2SO4] MnO_2 | 2 | 2 | ([MnO2])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-1) ([KMnO4])^(-2) ([CH3OH])^(-1) ([H2O])^3 [CO2] [K2SO4] ([MnO2])^2 = (([H2O])^3 [CO2] [K2SO4] ([MnO2])^2)/([H2SO4] ([KMnO4])^2 [CH3OH])

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + KMnO_4 + CH_3OH ⟶ H_2O + CO_2 + K_2SO_4 + MnO_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: H_2SO_4 + 2 KMnO_4 + CH_3OH ⟶ 3 H_2O + CO_2 + K_2SO_4 + 2 MnO_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 KMnO_4 | 2 | -2 CH_3OH | 1 | -1 H_2O | 3 | 3 CO_2 | 1 | 1 K_2SO_4 | 1 | 1 MnO_2 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 1 | -1 | -(Δ[H2SO4])/(Δt) KMnO_4 | 2 | -2 | -1/2 (Δ[KMnO4])/(Δt) CH_3OH | 1 | -1 | -(Δ[CH3OH])/(Δt) H_2O | 3 | 3 | 1/3 (Δ[H2O])/(Δt) CO_2 | 1 | 1 | (Δ[CO2])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) MnO_2 | 2 | 2 | 1/2 (Δ[MnO2])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -(Δ[H2SO4])/(Δt) = -1/2 (Δ[KMnO4])/(Δt) = -(Δ[CH3OH])/(Δt) = 1/3 (Δ[H2O])/(Δt) = (Δ[CO2])/(Δt) = (Δ[K2SO4])/(Δt) = 1/2 (Δ[MnO2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + KMnO_4 + CH_3OH ⟶ H_2O + CO_2 + K_2SO_4 + MnO_2 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: H_2SO_4 + 2 KMnO_4 + CH_3OH ⟶ 3 H_2O + CO_2 + K_2SO_4 + 2 MnO_2 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 KMnO_4 | 2 | -2 CH_3OH | 1 | -1 H_2O | 3 | 3 CO_2 | 1 | 1 K_2SO_4 | 1 | 1 MnO_2 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 1 | -1 | -(Δ[H2SO4])/(Δt) KMnO_4 | 2 | -2 | -1/2 (Δ[KMnO4])/(Δt) CH_3OH | 1 | -1 | -(Δ[CH3OH])/(Δt) H_2O | 3 | 3 | 1/3 (Δ[H2O])/(Δt) CO_2 | 1 | 1 | (Δ[CO2])/(Δt) K_2SO_4 | 1 | 1 | (Δ[K2SO4])/(Δt) MnO_2 | 2 | 2 | 1/2 (Δ[MnO2])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[H2SO4])/(Δt) = -1/2 (Δ[KMnO4])/(Δt) = -(Δ[CH3OH])/(Δt) = 1/3 (Δ[H2O])/(Δt) = (Δ[CO2])/(Δt) = (Δ[K2SO4])/(Δt) = 1/2 (Δ[MnO2])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | potassium permanganate | methanol | water | carbon dioxide | potassium sulfate | manganese dioxide formula | H_2SO_4 | KMnO_4 | CH_3OH | H_2O | CO_2 | K_2SO_4 | MnO_2 Hill formula | H_2O_4S | KMnO_4 | CH_4O | H_2O | CO_2 | K_2O_4S | MnO_2 name | sulfuric acid | potassium permanganate | methanol | water | carbon dioxide | potassium sulfate | manganese dioxide IUPAC name | sulfuric acid | potassium permanganate | methanol | water | carbon dioxide | dipotassium sulfate | dioxomanganese
| sulfuric acid | potassium permanganate | methanol | water | carbon dioxide | potassium sulfate | manganese dioxide formula | H_2SO_4 | KMnO_4 | CH_3OH | H_2O | CO_2 | K_2SO_4 | MnO_2 Hill formula | H_2O_4S | KMnO_4 | CH_4O | H_2O | CO_2 | K_2O_4S | MnO_2 name | sulfuric acid | potassium permanganate | methanol | water | carbon dioxide | potassium sulfate | manganese dioxide IUPAC name | sulfuric acid | potassium permanganate | methanol | water | carbon dioxide | dipotassium sulfate | dioxomanganese