Search

FeS + Na2O2 = Na2SO4 + Fe2O3 + Na2O

Input interpretation

FeS ferrous sulfide + Na_2O_2 sodium peroxide ⟶ Na_2SO_4 sodium sulfate + Fe_2O_3 iron(III) oxide + Na_2O sodium oxide
FeS ferrous sulfide + Na_2O_2 sodium peroxide ⟶ Na_2SO_4 sodium sulfate + Fe_2O_3 iron(III) oxide + Na_2O sodium oxide

Balanced equation

Balance the chemical equation algebraically: FeS + Na_2O_2 ⟶ Na_2SO_4 + Fe_2O_3 + Na_2O Add stoichiometric coefficients, c_i, to the reactants and products: c_1 FeS + c_2 Na_2O_2 ⟶ c_3 Na_2SO_4 + c_4 Fe_2O_3 + c_5 Na_2O Set the number of atoms in the reactants equal to the number of atoms in the products for Fe, S, Na and O: Fe: | c_1 = 2 c_4 S: | c_1 = c_3 Na: | 2 c_2 = 2 c_3 + 2 c_5 O: | 2 c_2 = 4 c_3 + 3 c_4 + c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_4 = 1 and solve the system of equations for the remaining coefficients: c_1 = 2 c_2 = 9 c_3 = 2 c_4 = 1 c_5 = 7 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 2 FeS + 9 Na_2O_2 ⟶ 2 Na_2SO_4 + Fe_2O_3 + 7 Na_2O
Balance the chemical equation algebraically: FeS + Na_2O_2 ⟶ Na_2SO_4 + Fe_2O_3 + Na_2O Add stoichiometric coefficients, c_i, to the reactants and products: c_1 FeS + c_2 Na_2O_2 ⟶ c_3 Na_2SO_4 + c_4 Fe_2O_3 + c_5 Na_2O Set the number of atoms in the reactants equal to the number of atoms in the products for Fe, S, Na and O: Fe: | c_1 = 2 c_4 S: | c_1 = c_3 Na: | 2 c_2 = 2 c_3 + 2 c_5 O: | 2 c_2 = 4 c_3 + 3 c_4 + c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_4 = 1 and solve the system of equations for the remaining coefficients: c_1 = 2 c_2 = 9 c_3 = 2 c_4 = 1 c_5 = 7 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 2 FeS + 9 Na_2O_2 ⟶ 2 Na_2SO_4 + Fe_2O_3 + 7 Na_2O

Structures

 + ⟶ + +
+ ⟶ + +

Names

ferrous sulfide + sodium peroxide ⟶ sodium sulfate + iron(III) oxide + sodium oxide
ferrous sulfide + sodium peroxide ⟶ sodium sulfate + iron(III) oxide + sodium oxide

Equilibrium constant

Construct the equilibrium constant, K, expression for: FeS + Na_2O_2 ⟶ Na_2SO_4 + Fe_2O_3 + Na_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 2 FeS + 9 Na_2O_2 ⟶ 2 Na_2SO_4 + Fe_2O_3 + 7 Na_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeS | 2 | -2 Na_2O_2 | 9 | -9 Na_2SO_4 | 2 | 2 Fe_2O_3 | 1 | 1 Na_2O | 7 | 7 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression FeS | 2 | -2 | ([FeS])^(-2) Na_2O_2 | 9 | -9 | ([Na2O2])^(-9) Na_2SO_4 | 2 | 2 | ([Na2SO4])^2 Fe_2O_3 | 1 | 1 | [Fe2O3] Na_2O | 7 | 7 | ([Na2O])^7 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([FeS])^(-2) ([Na2O2])^(-9) ([Na2SO4])^2 [Fe2O3] ([Na2O])^7 = (([Na2SO4])^2 [Fe2O3] ([Na2O])^7)/(([FeS])^2 ([Na2O2])^9)
Construct the equilibrium constant, K, expression for: FeS + Na_2O_2 ⟶ Na_2SO_4 + Fe_2O_3 + Na_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 2 FeS + 9 Na_2O_2 ⟶ 2 Na_2SO_4 + Fe_2O_3 + 7 Na_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeS | 2 | -2 Na_2O_2 | 9 | -9 Na_2SO_4 | 2 | 2 Fe_2O_3 | 1 | 1 Na_2O | 7 | 7 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression FeS | 2 | -2 | ([FeS])^(-2) Na_2O_2 | 9 | -9 | ([Na2O2])^(-9) Na_2SO_4 | 2 | 2 | ([Na2SO4])^2 Fe_2O_3 | 1 | 1 | [Fe2O3] Na_2O | 7 | 7 | ([Na2O])^7 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([FeS])^(-2) ([Na2O2])^(-9) ([Na2SO4])^2 [Fe2O3] ([Na2O])^7 = (([Na2SO4])^2 [Fe2O3] ([Na2O])^7)/(([FeS])^2 ([Na2O2])^9)

Rate of reaction

Construct the rate of reaction expression for: FeS + Na_2O_2 ⟶ Na_2SO_4 + Fe_2O_3 + Na_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 2 FeS + 9 Na_2O_2 ⟶ 2 Na_2SO_4 + Fe_2O_3 + 7 Na_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeS | 2 | -2 Na_2O_2 | 9 | -9 Na_2SO_4 | 2 | 2 Fe_2O_3 | 1 | 1 Na_2O | 7 | 7 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term FeS | 2 | -2 | -1/2 (Δ[FeS])/(Δt) Na_2O_2 | 9 | -9 | -1/9 (Δ[Na2O2])/(Δt) Na_2SO_4 | 2 | 2 | 1/2 (Δ[Na2SO4])/(Δt) Fe_2O_3 | 1 | 1 | (Δ[Fe2O3])/(Δt) Na_2O | 7 | 7 | 1/7 (Δ[Na2O])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/2 (Δ[FeS])/(Δt) = -1/9 (Δ[Na2O2])/(Δt) = 1/2 (Δ[Na2SO4])/(Δt) = (Δ[Fe2O3])/(Δt) = 1/7 (Δ[Na2O])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: FeS + Na_2O_2 ⟶ Na_2SO_4 + Fe_2O_3 + Na_2O Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 2 FeS + 9 Na_2O_2 ⟶ 2 Na_2SO_4 + Fe_2O_3 + 7 Na_2O Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i FeS | 2 | -2 Na_2O_2 | 9 | -9 Na_2SO_4 | 2 | 2 Fe_2O_3 | 1 | 1 Na_2O | 7 | 7 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term FeS | 2 | -2 | -1/2 (Δ[FeS])/(Δt) Na_2O_2 | 9 | -9 | -1/9 (Δ[Na2O2])/(Δt) Na_2SO_4 | 2 | 2 | 1/2 (Δ[Na2SO4])/(Δt) Fe_2O_3 | 1 | 1 | (Δ[Fe2O3])/(Δt) Na_2O | 7 | 7 | 1/7 (Δ[Na2O])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/2 (Δ[FeS])/(Δt) = -1/9 (Δ[Na2O2])/(Δt) = 1/2 (Δ[Na2SO4])/(Δt) = (Δ[Fe2O3])/(Δt) = 1/7 (Δ[Na2O])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | ferrous sulfide | sodium peroxide | sodium sulfate | iron(III) oxide | sodium oxide formula | FeS | Na_2O_2 | Na_2SO_4 | Fe_2O_3 | Na_2O Hill formula | FeS | Na_2O_2 | Na_2O_4S | Fe_2O_3 | Na_2O name | ferrous sulfide | sodium peroxide | sodium sulfate | iron(III) oxide | sodium oxide IUPAC name | | disodium peroxide | disodium sulfate | | disodium oxygen(-2) anion
| ferrous sulfide | sodium peroxide | sodium sulfate | iron(III) oxide | sodium oxide formula | FeS | Na_2O_2 | Na_2SO_4 | Fe_2O_3 | Na_2O Hill formula | FeS | Na_2O_2 | Na_2O_4S | Fe_2O_3 | Na_2O name | ferrous sulfide | sodium peroxide | sodium sulfate | iron(III) oxide | sodium oxide IUPAC name | | disodium peroxide | disodium sulfate | | disodium oxygen(-2) anion

Substance properties

 | ferrous sulfide | sodium peroxide | sodium sulfate | iron(III) oxide | sodium oxide molar mass | 87.9 g/mol | 77.978 g/mol | 142.04 g/mol | 159.69 g/mol | 61.979 g/mol phase | solid (at STP) | solid (at STP) | solid (at STP) | solid (at STP) |  melting point | 1195 °C | 660 °C | 884 °C | 1565 °C |  boiling point | | | 1429 °C | |  density | 4.84 g/cm^3 | 2.805 g/cm^3 | 2.68 g/cm^3 | 5.26 g/cm^3 | 2.27 g/cm^3 solubility in water | insoluble | reacts | soluble | insoluble |  dynamic viscosity | 0.00343 Pa s (at 1250 °C) | | | |  odor | | | | odorless |
| ferrous sulfide | sodium peroxide | sodium sulfate | iron(III) oxide | sodium oxide molar mass | 87.9 g/mol | 77.978 g/mol | 142.04 g/mol | 159.69 g/mol | 61.979 g/mol phase | solid (at STP) | solid (at STP) | solid (at STP) | solid (at STP) | melting point | 1195 °C | 660 °C | 884 °C | 1565 °C | boiling point | | | 1429 °C | | density | 4.84 g/cm^3 | 2.805 g/cm^3 | 2.68 g/cm^3 | 5.26 g/cm^3 | 2.27 g/cm^3 solubility in water | insoluble | reacts | soluble | insoluble | dynamic viscosity | 0.00343 Pa s (at 1250 °C) | | | | odor | | | | odorless |

Units