Search

H2SO4 + K2Cr2O7 + C6H12O6 = H2O + CO2 + K2SO4 + Cr2(SO4)3

Input interpretation

H_2SO_4 sulfuric acid + K_2Cr_2O_7 potassium dichromate + C_6H_12O_6 D-(+)-glucose ⟶ H_2O water + CO_2 carbon dioxide + K_2SO_4 potassium sulfate + Cr_2(SO_4)_3 chromium sulfate
H_2SO_4 sulfuric acid + K_2Cr_2O_7 potassium dichromate + C_6H_12O_6 D-(+)-glucose ⟶ H_2O water + CO_2 carbon dioxide + K_2SO_4 potassium sulfate + Cr_2(SO_4)_3 chromium sulfate

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + K_2Cr_2O_7 + C_6H_12O_6 ⟶ H_2O + CO_2 + K_2SO_4 + Cr_2(SO_4)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 K_2Cr_2O_7 + c_3 C_6H_12O_6 ⟶ c_4 H_2O + c_5 CO_2 + c_6 K_2SO_4 + c_7 Cr_2(SO_4)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Cr, K and C: H: | 2 c_1 + 12 c_3 = 2 c_4 O: | 4 c_1 + 7 c_2 + 6 c_3 = c_4 + 2 c_5 + 4 c_6 + 12 c_7 S: | c_1 = c_6 + 3 c_7 Cr: | 2 c_2 = 2 c_7 K: | 2 c_2 = 2 c_6 C: | 6 c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 16 c_2 = 4 c_3 = 1 c_4 = 22 c_5 = 6 c_6 = 4 c_7 = 4 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | 16 H_2SO_4 + 4 K_2Cr_2O_7 + C_6H_12O_6 ⟶ 22 H_2O + 6 CO_2 + 4 K_2SO_4 + 4 Cr_2(SO_4)_3
Balance the chemical equation algebraically: H_2SO_4 + K_2Cr_2O_7 + C_6H_12O_6 ⟶ H_2O + CO_2 + K_2SO_4 + Cr_2(SO_4)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 K_2Cr_2O_7 + c_3 C_6H_12O_6 ⟶ c_4 H_2O + c_5 CO_2 + c_6 K_2SO_4 + c_7 Cr_2(SO_4)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, Cr, K and C: H: | 2 c_1 + 12 c_3 = 2 c_4 O: | 4 c_1 + 7 c_2 + 6 c_3 = c_4 + 2 c_5 + 4 c_6 + 12 c_7 S: | c_1 = c_6 + 3 c_7 Cr: | 2 c_2 = 2 c_7 K: | 2 c_2 = 2 c_6 C: | 6 c_3 = c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_3 = 1 and solve the system of equations for the remaining coefficients: c_1 = 16 c_2 = 4 c_3 = 1 c_4 = 22 c_5 = 6 c_6 = 4 c_7 = 4 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | 16 H_2SO_4 + 4 K_2Cr_2O_7 + C_6H_12O_6 ⟶ 22 H_2O + 6 CO_2 + 4 K_2SO_4 + 4 Cr_2(SO_4)_3

Structures

 + + ⟶ + + +
+ + ⟶ + + +

Names

sulfuric acid + potassium dichromate + D-(+)-glucose ⟶ water + carbon dioxide + potassium sulfate + chromium sulfate
sulfuric acid + potassium dichromate + D-(+)-glucose ⟶ water + carbon dioxide + potassium sulfate + chromium sulfate

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + K_2Cr_2O_7 + C_6H_12O_6 ⟶ H_2O + CO_2 + K_2SO_4 + Cr_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 16 H_2SO_4 + 4 K_2Cr_2O_7 + C_6H_12O_6 ⟶ 22 H_2O + 6 CO_2 + 4 K_2SO_4 + 4 Cr_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 16 | -16 K_2Cr_2O_7 | 4 | -4 C_6H_12O_6 | 1 | -1 H_2O | 22 | 22 CO_2 | 6 | 6 K_2SO_4 | 4 | 4 Cr_2(SO_4)_3 | 4 | 4 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 16 | -16 | ([H2SO4])^(-16) K_2Cr_2O_7 | 4 | -4 | ([K2Cr2O7])^(-4) C_6H_12O_6 | 1 | -1 | ([C6H12O6])^(-1) H_2O | 22 | 22 | ([H2O])^22 CO_2 | 6 | 6 | ([CO2])^6 K_2SO_4 | 4 | 4 | ([K2SO4])^4 Cr_2(SO_4)_3 | 4 | 4 | ([Cr2(SO4)3])^4 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-16) ([K2Cr2O7])^(-4) ([C6H12O6])^(-1) ([H2O])^22 ([CO2])^6 ([K2SO4])^4 ([Cr2(SO4)3])^4 = (([H2O])^22 ([CO2])^6 ([K2SO4])^4 ([Cr2(SO4)3])^4)/(([H2SO4])^16 ([K2Cr2O7])^4 [C6H12O6])
Construct the equilibrium constant, K, expression for: H_2SO_4 + K_2Cr_2O_7 + C_6H_12O_6 ⟶ H_2O + CO_2 + K_2SO_4 + Cr_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: 16 H_2SO_4 + 4 K_2Cr_2O_7 + C_6H_12O_6 ⟶ 22 H_2O + 6 CO_2 + 4 K_2SO_4 + 4 Cr_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 16 | -16 K_2Cr_2O_7 | 4 | -4 C_6H_12O_6 | 1 | -1 H_2O | 22 | 22 CO_2 | 6 | 6 K_2SO_4 | 4 | 4 Cr_2(SO_4)_3 | 4 | 4 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 16 | -16 | ([H2SO4])^(-16) K_2Cr_2O_7 | 4 | -4 | ([K2Cr2O7])^(-4) C_6H_12O_6 | 1 | -1 | ([C6H12O6])^(-1) H_2O | 22 | 22 | ([H2O])^22 CO_2 | 6 | 6 | ([CO2])^6 K_2SO_4 | 4 | 4 | ([K2SO4])^4 Cr_2(SO_4)_3 | 4 | 4 | ([Cr2(SO4)3])^4 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-16) ([K2Cr2O7])^(-4) ([C6H12O6])^(-1) ([H2O])^22 ([CO2])^6 ([K2SO4])^4 ([Cr2(SO4)3])^4 = (([H2O])^22 ([CO2])^6 ([K2SO4])^4 ([Cr2(SO4)3])^4)/(([H2SO4])^16 ([K2Cr2O7])^4 [C6H12O6])

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + K_2Cr_2O_7 + C_6H_12O_6 ⟶ H_2O + CO_2 + K_2SO_4 + Cr_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 16 H_2SO_4 + 4 K_2Cr_2O_7 + C_6H_12O_6 ⟶ 22 H_2O + 6 CO_2 + 4 K_2SO_4 + 4 Cr_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 16 | -16 K_2Cr_2O_7 | 4 | -4 C_6H_12O_6 | 1 | -1 H_2O | 22 | 22 CO_2 | 6 | 6 K_2SO_4 | 4 | 4 Cr_2(SO_4)_3 | 4 | 4 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 16 | -16 | -1/16 (Δ[H2SO4])/(Δt) K_2Cr_2O_7 | 4 | -4 | -1/4 (Δ[K2Cr2O7])/(Δt) C_6H_12O_6 | 1 | -1 | -(Δ[C6H12O6])/(Δt) H_2O | 22 | 22 | 1/22 (Δ[H2O])/(Δt) CO_2 | 6 | 6 | 1/6 (Δ[CO2])/(Δt) K_2SO_4 | 4 | 4 | 1/4 (Δ[K2SO4])/(Δt) Cr_2(SO_4)_3 | 4 | 4 | 1/4 (Δ[Cr2(SO4)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -1/16 (Δ[H2SO4])/(Δt) = -1/4 (Δ[K2Cr2O7])/(Δt) = -(Δ[C6H12O6])/(Δt) = 1/22 (Δ[H2O])/(Δt) = 1/6 (Δ[CO2])/(Δt) = 1/4 (Δ[K2SO4])/(Δt) = 1/4 (Δ[Cr2(SO4)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + K_2Cr_2O_7 + C_6H_12O_6 ⟶ H_2O + CO_2 + K_2SO_4 + Cr_2(SO_4)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: 16 H_2SO_4 + 4 K_2Cr_2O_7 + C_6H_12O_6 ⟶ 22 H_2O + 6 CO_2 + 4 K_2SO_4 + 4 Cr_2(SO_4)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 16 | -16 K_2Cr_2O_7 | 4 | -4 C_6H_12O_6 | 1 | -1 H_2O | 22 | 22 CO_2 | 6 | 6 K_2SO_4 | 4 | 4 Cr_2(SO_4)_3 | 4 | 4 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 16 | -16 | -1/16 (Δ[H2SO4])/(Δt) K_2Cr_2O_7 | 4 | -4 | -1/4 (Δ[K2Cr2O7])/(Δt) C_6H_12O_6 | 1 | -1 | -(Δ[C6H12O6])/(Δt) H_2O | 22 | 22 | 1/22 (Δ[H2O])/(Δt) CO_2 | 6 | 6 | 1/6 (Δ[CO2])/(Δt) K_2SO_4 | 4 | 4 | 1/4 (Δ[K2SO4])/(Δt) Cr_2(SO_4)_3 | 4 | 4 | 1/4 (Δ[Cr2(SO4)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -1/16 (Δ[H2SO4])/(Δt) = -1/4 (Δ[K2Cr2O7])/(Δt) = -(Δ[C6H12O6])/(Δt) = 1/22 (Δ[H2O])/(Δt) = 1/6 (Δ[CO2])/(Δt) = 1/4 (Δ[K2SO4])/(Δt) = 1/4 (Δ[Cr2(SO4)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | potassium dichromate | D-(+)-glucose | water | carbon dioxide | potassium sulfate | chromium sulfate formula | H_2SO_4 | K_2Cr_2O_7 | C_6H_12O_6 | H_2O | CO_2 | K_2SO_4 | Cr_2(SO_4)_3 Hill formula | H_2O_4S | Cr_2K_2O_7 | C_6H_12O_6 | H_2O | CO_2 | K_2O_4S | Cr_2O_12S_3 name | sulfuric acid | potassium dichromate | D-(+)-glucose | water | carbon dioxide | potassium sulfate | chromium sulfate IUPAC name | sulfuric acid | dipotassium oxido-(oxido-dioxochromio)oxy-dioxochromium | 6-(hydroxymethyl)oxane-2, 3, 4, 5-tetrol | water | carbon dioxide | dipotassium sulfate | chromium(+3) cation trisulfate
| sulfuric acid | potassium dichromate | D-(+)-glucose | water | carbon dioxide | potassium sulfate | chromium sulfate formula | H_2SO_4 | K_2Cr_2O_7 | C_6H_12O_6 | H_2O | CO_2 | K_2SO_4 | Cr_2(SO_4)_3 Hill formula | H_2O_4S | Cr_2K_2O_7 | C_6H_12O_6 | H_2O | CO_2 | K_2O_4S | Cr_2O_12S_3 name | sulfuric acid | potassium dichromate | D-(+)-glucose | water | carbon dioxide | potassium sulfate | chromium sulfate IUPAC name | sulfuric acid | dipotassium oxido-(oxido-dioxochromio)oxy-dioxochromium | 6-(hydroxymethyl)oxane-2, 3, 4, 5-tetrol | water | carbon dioxide | dipotassium sulfate | chromium(+3) cation trisulfate