Search

H2SO4 + NH4VO3 = H2O + (NH4)2SO4 + V2O5

Input interpretation

H_2SO_4 sulfuric acid + NH_4VO_3 ammonium metavanadate ⟶ H_2O water + (NH_4)_2SO_4 ammonium sulfate + V_2O_5 vanadium pentoxide
H_2SO_4 sulfuric acid + NH_4VO_3 ammonium metavanadate ⟶ H_2O water + (NH_4)_2SO_4 ammonium sulfate + V_2O_5 vanadium pentoxide

Balanced equation

Balance the chemical equation algebraically: H_2SO_4 + NH_4VO_3 ⟶ H_2O + (NH_4)_2SO_4 + V_2O_5 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 NH_4VO_3 ⟶ c_3 H_2O + c_4 (NH_4)_2SO_4 + c_5 V_2O_5 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, N and V: H: | 2 c_1 + 4 c_2 = 2 c_3 + 8 c_4 O: | 4 c_1 + 3 c_2 = c_3 + 4 c_4 + 5 c_5 S: | c_1 = c_4 N: | c_2 = 2 c_4 V: | c_2 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 2 c_3 = 1 c_4 = 1 c_5 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | H_2SO_4 + 2 NH_4VO_3 ⟶ H_2O + (NH_4)_2SO_4 + V_2O_5
Balance the chemical equation algebraically: H_2SO_4 + NH_4VO_3 ⟶ H_2O + (NH_4)_2SO_4 + V_2O_5 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 H_2SO_4 + c_2 NH_4VO_3 ⟶ c_3 H_2O + c_4 (NH_4)_2SO_4 + c_5 V_2O_5 Set the number of atoms in the reactants equal to the number of atoms in the products for H, O, S, N and V: H: | 2 c_1 + 4 c_2 = 2 c_3 + 8 c_4 O: | 4 c_1 + 3 c_2 = c_3 + 4 c_4 + 5 c_5 S: | c_1 = c_4 N: | c_2 = 2 c_4 V: | c_2 = 2 c_5 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 2 c_3 = 1 c_4 = 1 c_5 = 1 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | H_2SO_4 + 2 NH_4VO_3 ⟶ H_2O + (NH_4)_2SO_4 + V_2O_5

Structures

 + ⟶ + +
+ ⟶ + +

Names

sulfuric acid + ammonium metavanadate ⟶ water + ammonium sulfate + vanadium pentoxide
sulfuric acid + ammonium metavanadate ⟶ water + ammonium sulfate + vanadium pentoxide

Equilibrium constant

Construct the equilibrium constant, K, expression for: H_2SO_4 + NH_4VO_3 ⟶ H_2O + (NH_4)_2SO_4 + V_2O_5 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: H_2SO_4 + 2 NH_4VO_3 ⟶ H_2O + (NH_4)_2SO_4 + V_2O_5 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 NH_4VO_3 | 2 | -2 H_2O | 1 | 1 (NH_4)_2SO_4 | 1 | 1 V_2O_5 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 1 | -1 | ([H2SO4])^(-1) NH_4VO_3 | 2 | -2 | ([NH4VO3])^(-2) H_2O | 1 | 1 | [H2O] (NH_4)_2SO_4 | 1 | 1 | [(NH4)2SO4] V_2O_5 | 1 | 1 | [V2O5] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([H2SO4])^(-1) ([NH4VO3])^(-2) [H2O] [(NH4)2SO4] [V2O5] = ([H2O] [(NH4)2SO4] [V2O5])/([H2SO4] ([NH4VO3])^2)
Construct the equilibrium constant, K, expression for: H_2SO_4 + NH_4VO_3 ⟶ H_2O + (NH_4)_2SO_4 + V_2O_5 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: H_2SO_4 + 2 NH_4VO_3 ⟶ H_2O + (NH_4)_2SO_4 + V_2O_5 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 NH_4VO_3 | 2 | -2 H_2O | 1 | 1 (NH_4)_2SO_4 | 1 | 1 V_2O_5 | 1 | 1 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression H_2SO_4 | 1 | -1 | ([H2SO4])^(-1) NH_4VO_3 | 2 | -2 | ([NH4VO3])^(-2) H_2O | 1 | 1 | [H2O] (NH_4)_2SO_4 | 1 | 1 | [(NH4)2SO4] V_2O_5 | 1 | 1 | [V2O5] The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([H2SO4])^(-1) ([NH4VO3])^(-2) [H2O] [(NH4)2SO4] [V2O5] = ([H2O] [(NH4)2SO4] [V2O5])/([H2SO4] ([NH4VO3])^2)

Rate of reaction

Construct the rate of reaction expression for: H_2SO_4 + NH_4VO_3 ⟶ H_2O + (NH_4)_2SO_4 + V_2O_5 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: H_2SO_4 + 2 NH_4VO_3 ⟶ H_2O + (NH_4)_2SO_4 + V_2O_5 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 NH_4VO_3 | 2 | -2 H_2O | 1 | 1 (NH_4)_2SO_4 | 1 | 1 V_2O_5 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 1 | -1 | -(Δ[H2SO4])/(Δt) NH_4VO_3 | 2 | -2 | -1/2 (Δ[NH4VO3])/(Δt) H_2O | 1 | 1 | (Δ[H2O])/(Δt) (NH_4)_2SO_4 | 1 | 1 | (Δ[(NH4)2SO4])/(Δt) V_2O_5 | 1 | 1 | (Δ[V2O5])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -(Δ[H2SO4])/(Δt) = -1/2 (Δ[NH4VO3])/(Δt) = (Δ[H2O])/(Δt) = (Δ[(NH4)2SO4])/(Δt) = (Δ[V2O5])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: H_2SO_4 + NH_4VO_3 ⟶ H_2O + (NH_4)_2SO_4 + V_2O_5 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: H_2SO_4 + 2 NH_4VO_3 ⟶ H_2O + (NH_4)_2SO_4 + V_2O_5 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i H_2SO_4 | 1 | -1 NH_4VO_3 | 2 | -2 H_2O | 1 | 1 (NH_4)_2SO_4 | 1 | 1 V_2O_5 | 1 | 1 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term H_2SO_4 | 1 | -1 | -(Δ[H2SO4])/(Δt) NH_4VO_3 | 2 | -2 | -1/2 (Δ[NH4VO3])/(Δt) H_2O | 1 | 1 | (Δ[H2O])/(Δt) (NH_4)_2SO_4 | 1 | 1 | (Δ[(NH4)2SO4])/(Δt) V_2O_5 | 1 | 1 | (Δ[V2O5])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[H2SO4])/(Δt) = -1/2 (Δ[NH4VO3])/(Δt) = (Δ[H2O])/(Δt) = (Δ[(NH4)2SO4])/(Δt) = (Δ[V2O5])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | sulfuric acid | ammonium metavanadate | water | ammonium sulfate | vanadium pentoxide formula | H_2SO_4 | NH_4VO_3 | H_2O | (NH_4)_2SO_4 | V_2O_5 Hill formula | H_2O_4S | H_4NO_3V | H_2O | H_8N_2O_4S | O_5V_2 name | sulfuric acid | ammonium metavanadate | water | ammonium sulfate | vanadium pentoxide IUPAC name | sulfuric acid | ammonium oxido-dioxovanadium | water | |
| sulfuric acid | ammonium metavanadate | water | ammonium sulfate | vanadium pentoxide formula | H_2SO_4 | NH_4VO_3 | H_2O | (NH_4)_2SO_4 | V_2O_5 Hill formula | H_2O_4S | H_4NO_3V | H_2O | H_8N_2O_4S | O_5V_2 name | sulfuric acid | ammonium metavanadate | water | ammonium sulfate | vanadium pentoxide IUPAC name | sulfuric acid | ammonium oxido-dioxovanadium | water | |

Substance properties

 | sulfuric acid | ammonium metavanadate | water | ammonium sulfate | vanadium pentoxide molar mass | 98.07 g/mol | 116.98 g/mol | 18.015 g/mol | 132.1 g/mol | 181.88 g/mol phase | liquid (at STP) | solid (at STP) | liquid (at STP) | solid (at STP) | solid (at STP) melting point | 10.371 °C | 200 °C | 0 °C | 280 °C | 690 °C boiling point | 279.6 °C | | 99.9839 °C | | 1750 °C density | 1.8305 g/cm^3 | 2.32 g/cm^3 | 1 g/cm^3 | 1.77 g/cm^3 | 3.35 g/cm^3 solubility in water | very soluble | | | |  surface tension | 0.0735 N/m | | 0.0728 N/m | |  dynamic viscosity | 0.021 Pa s (at 25 °C) | | 8.9×10^-4 Pa s (at 25 °C) | |  odor | odorless | | odorless | odorless |
| sulfuric acid | ammonium metavanadate | water | ammonium sulfate | vanadium pentoxide molar mass | 98.07 g/mol | 116.98 g/mol | 18.015 g/mol | 132.1 g/mol | 181.88 g/mol phase | liquid (at STP) | solid (at STP) | liquid (at STP) | solid (at STP) | solid (at STP) melting point | 10.371 °C | 200 °C | 0 °C | 280 °C | 690 °C boiling point | 279.6 °C | | 99.9839 °C | | 1750 °C density | 1.8305 g/cm^3 | 2.32 g/cm^3 | 1 g/cm^3 | 1.77 g/cm^3 | 3.35 g/cm^3 solubility in water | very soluble | | | | surface tension | 0.0735 N/m | | 0.0728 N/m | | dynamic viscosity | 0.021 Pa s (at 25 °C) | | 8.9×10^-4 Pa s (at 25 °C) | | odor | odorless | | odorless | odorless |

Units