Search

Al2(SO4)3 + NaHCO3 = CO2 + Na2SO4 + Al(OH)3

Input interpretation

Al_2(SO_4)_3 aluminum sulfate + NaHCO_3 sodium bicarbonate ⟶ CO_2 carbon dioxide + Na_2SO_4 sodium sulfate + Al(OH)_3 aluminum hydroxide
Al_2(SO_4)_3 aluminum sulfate + NaHCO_3 sodium bicarbonate ⟶ CO_2 carbon dioxide + Na_2SO_4 sodium sulfate + Al(OH)_3 aluminum hydroxide

Balanced equation

Balance the chemical equation algebraically: Al_2(SO_4)_3 + NaHCO_3 ⟶ CO_2 + Na_2SO_4 + Al(OH)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Al_2(SO_4)_3 + c_2 NaHCO_3 ⟶ c_3 CO_2 + c_4 Na_2SO_4 + c_5 Al(OH)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for Al, O, S, C, H and Na: Al: | 2 c_1 = c_5 O: | 12 c_1 + 3 c_2 = 2 c_3 + 4 c_4 + 3 c_5 S: | 3 c_1 = c_4 C: | c_2 = c_3 H: | c_2 = 3 c_5 Na: | c_2 = 2 c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 6 c_3 = 6 c_4 = 3 c_5 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: |   | Al_2(SO_4)_3 + 6 NaHCO_3 ⟶ 6 CO_2 + 3 Na_2SO_4 + 2 Al(OH)_3
Balance the chemical equation algebraically: Al_2(SO_4)_3 + NaHCO_3 ⟶ CO_2 + Na_2SO_4 + Al(OH)_3 Add stoichiometric coefficients, c_i, to the reactants and products: c_1 Al_2(SO_4)_3 + c_2 NaHCO_3 ⟶ c_3 CO_2 + c_4 Na_2SO_4 + c_5 Al(OH)_3 Set the number of atoms in the reactants equal to the number of atoms in the products for Al, O, S, C, H and Na: Al: | 2 c_1 = c_5 O: | 12 c_1 + 3 c_2 = 2 c_3 + 4 c_4 + 3 c_5 S: | 3 c_1 = c_4 C: | c_2 = c_3 H: | c_2 = 3 c_5 Na: | c_2 = 2 c_4 Since the coefficients are relative quantities and underdetermined, choose a coefficient to set arbitrarily. To keep the coefficients small, the arbitrary value is ordinarily one. For instance, set c_1 = 1 and solve the system of equations for the remaining coefficients: c_1 = 1 c_2 = 6 c_3 = 6 c_4 = 3 c_5 = 2 Substitute the coefficients into the chemical reaction to obtain the balanced equation: Answer: | | Al_2(SO_4)_3 + 6 NaHCO_3 ⟶ 6 CO_2 + 3 Na_2SO_4 + 2 Al(OH)_3

Structures

 + ⟶ + +
+ ⟶ + +

Names

aluminum sulfate + sodium bicarbonate ⟶ carbon dioxide + sodium sulfate + aluminum hydroxide
aluminum sulfate + sodium bicarbonate ⟶ carbon dioxide + sodium sulfate + aluminum hydroxide

Equilibrium constant

Construct the equilibrium constant, K, expression for: Al_2(SO_4)_3 + NaHCO_3 ⟶ CO_2 + Na_2SO_4 + Al(OH)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: Al_2(SO_4)_3 + 6 NaHCO_3 ⟶ 6 CO_2 + 3 Na_2SO_4 + 2 Al(OH)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Al_2(SO_4)_3 | 1 | -1 NaHCO_3 | 6 | -6 CO_2 | 6 | 6 Na_2SO_4 | 3 | 3 Al(OH)_3 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Al_2(SO_4)_3 | 1 | -1 | ([Al2(SO4)3])^(-1) NaHCO_3 | 6 | -6 | ([NaHCO3])^(-6) CO_2 | 6 | 6 | ([CO2])^6 Na_2SO_4 | 3 | 3 | ([Na2SO4])^3 Al(OH)_3 | 2 | 2 | ([Al(OH)3])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: |   | K_c = ([Al2(SO4)3])^(-1) ([NaHCO3])^(-6) ([CO2])^6 ([Na2SO4])^3 ([Al(OH)3])^2 = (([CO2])^6 ([Na2SO4])^3 ([Al(OH)3])^2)/([Al2(SO4)3] ([NaHCO3])^6)
Construct the equilibrium constant, K, expression for: Al_2(SO_4)_3 + NaHCO_3 ⟶ CO_2 + Na_2SO_4 + Al(OH)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the activity expression for each chemical species. • Use the activity expressions to build the equilibrium constant expression. Write the balanced chemical equation: Al_2(SO_4)_3 + 6 NaHCO_3 ⟶ 6 CO_2 + 3 Na_2SO_4 + 2 Al(OH)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Al_2(SO_4)_3 | 1 | -1 NaHCO_3 | 6 | -6 CO_2 | 6 | 6 Na_2SO_4 | 3 | 3 Al(OH)_3 | 2 | 2 Assemble the activity expressions accounting for the state of matter and ν_i: chemical species | c_i | ν_i | activity expression Al_2(SO_4)_3 | 1 | -1 | ([Al2(SO4)3])^(-1) NaHCO_3 | 6 | -6 | ([NaHCO3])^(-6) CO_2 | 6 | 6 | ([CO2])^6 Na_2SO_4 | 3 | 3 | ([Na2SO4])^3 Al(OH)_3 | 2 | 2 | ([Al(OH)3])^2 The equilibrium constant symbol in the concentration basis is: K_c Mulitply the activity expressions to arrive at the K_c expression: Answer: | | K_c = ([Al2(SO4)3])^(-1) ([NaHCO3])^(-6) ([CO2])^6 ([Na2SO4])^3 ([Al(OH)3])^2 = (([CO2])^6 ([Na2SO4])^3 ([Al(OH)3])^2)/([Al2(SO4)3] ([NaHCO3])^6)

Rate of reaction

Construct the rate of reaction expression for: Al_2(SO_4)_3 + NaHCO_3 ⟶ CO_2 + Na_2SO_4 + Al(OH)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: Al_2(SO_4)_3 + 6 NaHCO_3 ⟶ 6 CO_2 + 3 Na_2SO_4 + 2 Al(OH)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Al_2(SO_4)_3 | 1 | -1 NaHCO_3 | 6 | -6 CO_2 | 6 | 6 Na_2SO_4 | 3 | 3 Al(OH)_3 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Al_2(SO_4)_3 | 1 | -1 | -(Δ[Al2(SO4)3])/(Δt) NaHCO_3 | 6 | -6 | -1/6 (Δ[NaHCO3])/(Δt) CO_2 | 6 | 6 | 1/6 (Δ[CO2])/(Δt) Na_2SO_4 | 3 | 3 | 1/3 (Δ[Na2SO4])/(Δt) Al(OH)_3 | 2 | 2 | 1/2 (Δ[Al(OH)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: |   | rate = -(Δ[Al2(SO4)3])/(Δt) = -1/6 (Δ[NaHCO3])/(Δt) = 1/6 (Δ[CO2])/(Δt) = 1/3 (Δ[Na2SO4])/(Δt) = 1/2 (Δ[Al(OH)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)
Construct the rate of reaction expression for: Al_2(SO_4)_3 + NaHCO_3 ⟶ CO_2 + Na_2SO_4 + Al(OH)_3 Plan: • Balance the chemical equation. • Determine the stoichiometric numbers. • Assemble the rate term for each chemical species. • Write the rate of reaction expression. Write the balanced chemical equation: Al_2(SO_4)_3 + 6 NaHCO_3 ⟶ 6 CO_2 + 3 Na_2SO_4 + 2 Al(OH)_3 Assign stoichiometric numbers, ν_i, using the stoichiometric coefficients, c_i, from the balanced chemical equation in the following manner: ν_i = -c_i for reactants and ν_i = c_i for products: chemical species | c_i | ν_i Al_2(SO_4)_3 | 1 | -1 NaHCO_3 | 6 | -6 CO_2 | 6 | 6 Na_2SO_4 | 3 | 3 Al(OH)_3 | 2 | 2 The rate term for each chemical species, B_i, is 1/ν_i(Δ[B_i])/(Δt) where [B_i] is the amount concentration and t is time: chemical species | c_i | ν_i | rate term Al_2(SO_4)_3 | 1 | -1 | -(Δ[Al2(SO4)3])/(Δt) NaHCO_3 | 6 | -6 | -1/6 (Δ[NaHCO3])/(Δt) CO_2 | 6 | 6 | 1/6 (Δ[CO2])/(Δt) Na_2SO_4 | 3 | 3 | 1/3 (Δ[Na2SO4])/(Δt) Al(OH)_3 | 2 | 2 | 1/2 (Δ[Al(OH)3])/(Δt) (for infinitesimal rate of change, replace Δ with d) Set the rate terms equal to each other to arrive at the rate expression: Answer: | | rate = -(Δ[Al2(SO4)3])/(Δt) = -1/6 (Δ[NaHCO3])/(Δt) = 1/6 (Δ[CO2])/(Δt) = 1/3 (Δ[Na2SO4])/(Δt) = 1/2 (Δ[Al(OH)3])/(Δt) (assuming constant volume and no accumulation of intermediates or side products)

Chemical names and formulas

 | aluminum sulfate | sodium bicarbonate | carbon dioxide | sodium sulfate | aluminum hydroxide formula | Al_2(SO_4)_3 | NaHCO_3 | CO_2 | Na_2SO_4 | Al(OH)_3 Hill formula | Al_2O_12S_3 | CHNaO_3 | CO_2 | Na_2O_4S | AlH_3O_3 name | aluminum sulfate | sodium bicarbonate | carbon dioxide | sodium sulfate | aluminum hydroxide IUPAC name | dialuminum trisulfate | sodium hydrogen carbonate | carbon dioxide | disodium sulfate | aluminum hydroxide
| aluminum sulfate | sodium bicarbonate | carbon dioxide | sodium sulfate | aluminum hydroxide formula | Al_2(SO_4)_3 | NaHCO_3 | CO_2 | Na_2SO_4 | Al(OH)_3 Hill formula | Al_2O_12S_3 | CHNaO_3 | CO_2 | Na_2O_4S | AlH_3O_3 name | aluminum sulfate | sodium bicarbonate | carbon dioxide | sodium sulfate | aluminum hydroxide IUPAC name | dialuminum trisulfate | sodium hydrogen carbonate | carbon dioxide | disodium sulfate | aluminum hydroxide

Substance properties

 | aluminum sulfate | sodium bicarbonate | carbon dioxide | sodium sulfate | aluminum hydroxide molar mass | 342.1 g/mol | 84.006 g/mol | 44.009 g/mol | 142.04 g/mol | 78.003 g/mol phase | solid (at STP) | solid (at STP) | gas (at STP) | solid (at STP) |  melting point | 770 °C | 270 °C | -56.56 °C (at triple point) | 884 °C |  boiling point | | | -78.5 °C (at sublimation point) | 1429 °C |  density | 2.71 g/cm^3 | 2.16 g/cm^3 | 0.00184212 g/cm^3 (at 20 °C) | 2.68 g/cm^3 |  solubility in water | soluble | soluble | | soluble |  dynamic viscosity | | | 1.491×10^-5 Pa s (at 25 °C) | |  odor | | odorless | odorless | |
| aluminum sulfate | sodium bicarbonate | carbon dioxide | sodium sulfate | aluminum hydroxide molar mass | 342.1 g/mol | 84.006 g/mol | 44.009 g/mol | 142.04 g/mol | 78.003 g/mol phase | solid (at STP) | solid (at STP) | gas (at STP) | solid (at STP) | melting point | 770 °C | 270 °C | -56.56 °C (at triple point) | 884 °C | boiling point | | | -78.5 °C (at sublimation point) | 1429 °C | density | 2.71 g/cm^3 | 2.16 g/cm^3 | 0.00184212 g/cm^3 (at 20 °C) | 2.68 g/cm^3 | solubility in water | soluble | soluble | | soluble | dynamic viscosity | | | 1.491×10^-5 Pa s (at 25 °C) | | odor | | odorless | odorless | |

Units